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Smectic phases of semiflexible manifolds: Constant-pressure ensemble
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Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 31 January 2002; revised manuscript received 12 July 2002; published 27 November 2002!

We pursue the constant-pressure ensemble approach to elucidate the statistical mechanics of the smectic
phases of semiflexible manifolds, such as two-dimensional smectic phases of long semiflexible polymers and
three-dimensional lamellar fluid membrane phases. We use this approach to consider in detail sterically stabi-
lized phases of semiflexible polymers in two-dimensional~2D! smectic systems. For these 2D systems, we
obtain the universal constants characterizing the entropic repulsion between semiflexible polymers, such as
those in the osmotic pressureP5a(kBT)4/3/k1/3(a2amin)

5/3 with a found here to be>0.432~here,a is the
smectic phase period, andamin andk are the polymer cross-sectional diameter and bending rigidity constant,
respectively!. We address, by numerical simulations and analytic arguments, finite stacks ofN semiflexible
manifolds, and discuss in detail the practically interesting thermodynamic limitN→`. We show that the
thermodynamic limit is quickly approached within the constant-pressure ensemble: Already from numerical
simulations involving just few semiflexible polymers under constant isotropic pressure, one can obtain the
infinite 2D smectic equation of state within a few percent accuracy. We use our results to discuss the compe-
tition of electrostatic and entropic effects in quasi-2D smectic phases of DNA-cationic-lipid complexes. We use
our quantitative results to discuss in detail the elasticity, topological defects, anomalous elasticity, and the
effects of externally applied tension in sterically stabilized 2D smectic phases of long semiflexible polymers.

DOI: 10.1103/PhysRevE.66.051918 PACS number~s!: 87.15.2v, 61.30.Jf, 82.70.Kj
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I. INTRODUCTION

Over recent years, we have witnessed an increased ex
mental and theoretical interest in structural and thermo
namic properties of two-dimensional~2D! smectic-A phases
@1,2#. In part, it has been stimulated by the recent discov
of such a phase of long DNA molecules intercalated betw
lipid membranes in DNA-cationic-lipid complexes@3–8#. In
these systems, long semiflexible DNA molecules themse
form stacks of one-dimensional smectic layers that are
analogs of lamellar fluid membrane phases and other th
dimensional smecticA phases@9–13#. Because of the promi
nent effects of thermal fluctuations in these phases, sme
and smecticlike phases continue to remain in the focus
theoretical and experimental statistical physics. At lo
length scales~compared to the smectic-phase perioda), ther-
mal fluctuations are responsible for the absence of true l
range positional order of smectic layers@1,14,15#, as well as
for the anomalous elastic behavior present in both tw
dimensional and three-dimensional smectics@2,16#. On the
other hand, thermal fluctuations in smectics may have
nificant effects also onmesoscopiclength scales. Thus, fluc
tuations completely dominate substantial experimental pr
erties of sterically stabilized smectic phases of la
semiflexible manifolds, such as stacks of fluid membra
~lamellar phases! or semiflexible polymers interacting wit
purely hard-core repulsion. In these lyotropic smectics, e
tic constants and the smectic equation of state, which rel
the isotropic osmotic pressureP to the smectic perioda, are
all purely entropic in origin@9–11,17–22#. These properties
are dominated by strong fluctuations of thermally rou
manifolds forming smectic stacks, as pointed out, for the fi
time, by Helfrich@17#. In these smectics, semiflexible man
folds are essentially free objects up to a mesoscopic len
scale equal to the lateral separation between collisions
1063-651X/2002/66~5!/051918~14!/$20.00 66 0519
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manifold with neighboring manifolds in the stack. The co
finement of manifolds by their neighbors in the stack yield
reduction of their entropy~i.e., increase in free energy! giv-
ing rise to the entropic osmotic pressure in these steric
stabilized smectics. For the case of fluid membranes, the
sues related to this effect have been investigated in a num
of theoretical and experimental studies on lamellar pha
@9,10,17,22#. The interest in these entropic phenomena g
beyond the lamellar phases. In particular, they play a sign
cant role in global theories of phase equilibria in fluid me
brane systems@23#.

In realistic smectic materials, similar entropic effects m
be substantial also in the situations in which the interacti
between semiflexible manifolds are not purely steric. Sign
cant smectic properties~elastic constants, equation of stat
etc.! typically result from a subtle interplay between entrop
effects and bare interactions between manifolds. In this
per, we pursue theconstant-pressure ensembleapproach to
address the statistical mechanics of smectic phases of fle
manifolds, such as two-dimensional smectic phases of l
semiflexible polymers and three-dimensional lamellar pha
of fluid membranes, with arbitrary form of the interaction
between manifolds, see Sec. II. This approach is used, in
Sec. III, to consider in detail entropically stabilized 2D sy
tems of long semiflexible polymers with hard-core repulsio
Such systems are stabilized purely by steric entropy@18–20#.
For these 2D smectic stacks ofN semiflexible polymers fluc-
tuating in a plane, we calculate, in the thermodynamic lim
N→`, the universal constants characterizing the strength
the entropic repulsion between semiflexible polymers.

We address, by numerical simulations and analytic ar
ments, finite stacks ofN semiflexible manifolds, and discus
in detail the experimentally relevant but computationally e
pensive thermodynamic limitN→`. We show that this ther-
modynamic limit is quickly approached within the constan
©2002 The American Physical Society18-1
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pressure ensemble: Already from the numerical simulati
involving just few manifolds under constant isotropic pre
sure, we obtain the infinite smectic equation of state withi
few percent accuracy, as documented in Sec. III and fur
discussed in the Sec. IV A. In Sec. IV A, we also discuss
interesting problem of hairpin turn dislocations in sterica
stabilized 2D smectic phases of long semiflexible polym
@8#. In Sec. IV B, we discuss entropic effects in the situatio
in which the interactions between flexible manifolds are
purely steric. In that section, we discuss the systems st
lized by electrostatic repulsion of the form appropriate
the quasi-2D smectics experimentally studied in DN
cationic-lipid complexes@4#. Our findings support the sug
gestion of the experimental studies that the electrostatic
fects dominate over the entropic effects, at least in
experimentally accessible range of interpolymer separat
in DNA-cationic-lipid complexes@4#. In Sec. IV C, we ad-
dress entropically stabilized 2D smectic phases of polym
under externally applied tension~stacks of directed poly-
mers!. We use these results to further highlight the rap
convergence to theN→` limit in the constant-pressure en
semble approach advocated in this paper. Finally, in S
IV D we discuss the anomalous elasticity in 2D smec
phases of long semiflexible polymers.

This paper is organized as follows: In Sec. II, we intr
duce the constant-pressure ensemble description of the s
of semiflexible manifolds. In Sec. III, we apply our approa
to investigate, by Monte Carlo~MC! simulations, the steri-
cally stabilized 2D smectics comprised of long semiflexib
polymers. In Sec. IV, we discuss in more detail various
and quasi-2D smectic systems. In the Appendix, we ana
cally discuss the approach to the thermodynamic limitN
→`) behavior essential for the discussion in Sec. III. In t
Appendix, we also discuss a subtle discretization sche
used to efficiently achieve the continuum limit in our M
simulations and some other details of these simulations.

II. THERMODYNAMICS OF STACKS OF FLEXIBLE
MANIFOLDS

In this section, we introduce the constant-pressure
semble approach to discuss the thermodynamics of sm
stacks of semiflexible manifolds. Figure 1 depicts a stack
N fluctuatingd-dimensional manifolds such as semiflexib
polymers (d51) or fluid membranes (d52) fluctuating in
(d11)-dimensional space. In Fig. 1,hn(x), with n
5 1,2,3, . . . ,N, signifies the local height of thenth mani-
fold above thed-dimensional stack base area. Figure 1 co
ceptualizes a smectic stack fluctuating at a fixed osm
pressureP exerted both on lateral sides of the stack as w
as on the first (n51) and the last (n5N) manifold in the
stack. In this constant-pressure ensemble, various intere
quantities are functions of the osmotic pressureP. For ex-
ample, the average smectic-phase perioda is

a~P!5 K hN~x!2h1~x!

N21 L . ~2.1!

Here,^•••& is the equilibrium average done with respect
the microscopic smectic Hamiltonian, of the form
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Hsm~h1 , . . . ,hN!51PE ddx@hN~x!2h1~x!#

1Hcom1Hbend. ~2.2!

Here, the first term is the product of thepressure and the
stack volumeterm, describing the coupling of the system
an externally appliedisotropicpressure@8#. Hcom in Eq. ~2.2!
is the compressional energy of the stack due to interact
between the manifolds, typically of the form

Hcom5 (
n51

N21 E ddx V„hn11~x!2hn~x!…. ~2.3!

V„hn11(x)2hn(x)… in Eq. ~2.3! is a microscopic~bare! in-
teraction potential between neighboring manifolds.Hbend in
Eq. ~2.2! is the bending energy of the stack due to the be
ing elasticity of the manifolds, of the form

Hbend5 (
n51

N E ddx
k

2
@Dhn~x!#2. ~2.4!

Here,k is the bending~curvature! elastic constant of flexible
manifolds, andD5(]/]x)2, is thed-dimensional Laplacian
@21#. In thermodynamic equilibrium, the partition function
going with the smectic Hamiltonian Eq.~2.2!,

Z5E Dh1•••E DhNe2Hsm(h1 , . . . ,hN)/kBT, ~2.5!

is associated with the constant-pressure free energy de
defined per unit area of each manifold as

F~P!52
kBT

~N21!AB
ln~Z!, ~2.6!

FIG. 1. Stack ofN fluctuatingd-dimensional flexible manifolds
such as semiflexible polymers (d51) and fluid membranes (d
52) in a (d11)-dimensional space. Here,hn(x), with n
51,2,3, . . . ,N, signifies the local height of thenth manifold above
the d-dimensional stack base area. The figure conceptualize
smectic fluctuating at a fixed osmotic pressureP exerted both on
lateral sides on the stack as well as on the first (n51) and last (n
5N) manifold in the stack. The average value of the smectic-ph
period, i.e., the average separation between manifolds,a, is defined
by the equilibrium averagea5^hN(x)2h1(x)&/(N21).
8-2
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SMECTIC PHASES OF SEMI FLEXIBLE MANIFOLDS: . . . PHYSICAL REVIEW E 66, 051918 ~2002!
with AB5*ddx, the stack base area. The average sme
period, Eq.~2.1!, can be obtained by differentiating the fre
energy density in Eq.~2.6!,

a~P![ f d
(N)~P!5 K hN~x!2h1~x!

N21 L 5
]F~P!

]P
. ~2.7!

The smectic equation of state can be found simply by inv
ing the function f d

(N)(P) defined in Eq.~2.7!. In general,
f d

(N)(P) can be found by solving the statistical problem i
volving N d-dimensional manifolds interacting through th
HamiltonianHsm($hn%), Eq. ~2.2!, see Sec. III.

In the absence of thermal fluctuations (T50), the
smectic-phase perioda is obtained simply by minimizing the
second and the third term in Eq.~2.2!, which can be more
suggestively combined into a single term,

Hcom8 5 (
n51

N21 E ddx@V„hn11~x!2hn~x!…

1P$hn11~x!2hn~x!%#. ~2.8!

By minimizing Eq. ~2.8! over a5hn112hn , we obtain
F(P)5@V(a)1Pa#min(a) , yielding the ‘‘zero-temperature’
~mean field! equation of state,

P52
]V~a!

]a
~T50!. ~2.9!

Expanding the smectic Hamiltonian Eq.~2.2! around this
minimum,yields the discrete harmonic smectic elastic Ham
tonian

Hel5E ddxFa(
n51

N
Bsm

2 S hn11~x!2hn~x!2a

a D 2

1a(
n51

N
Ksm

2 S ]2hn~x!

]x2 D 2G , ~2.10!

where

Ksm5
k

a
, ~2.11!

is the smectic bending modulus and

Bsm52a
]P~a!

]a
5a

]2V~a!

]a2 ~T50! ~2.12!

is the bare smectic compressibility. Introducing smectic p
non variables in Eq.~2.10!, via hn(x)5un(x)1na, and tak-
ing the continuum limit,un(x)5u(z,x), z5na, yields the
standard harmonic smectic elastic Hamiltonian@15#

Hel~u!5E dzE ddxFBsm

2 S ]u

]zD 2

1
Ksm

2 S ]2u

]x2D 2G .
~2.13!

For nonzero temperatures, the pressure is given by a re
lation isomorphic to Eq.~2.9!, with the bare interactionV(a)
05191
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therein replaced by a suitably defined effective interact
potentialVe f f(a). This potential is defined in the constan
volume ensemble that is related to our constant-pressure
semble by the Legendre’s transform

F~P!5@Ve f f~a!1Pa#min(a) . ~2.14!

The variation overa yields

P52
]Ve f f~a!

]a
, ~2.15!

as anticipated above. With a knownF(P), the form of the
effective potentialVe f f(a) can be obtained by inverting th
Legendre transform in Eq.~2.14!, by using the variational
principle,

Ve f f~a!5@F~P!2Pa#ext(P) . ~2.16!

By extremizing here overP, we find a5]F(P)/]P, in ac-
cord with Eq.~2.7! above. In general~at any temperature!,
the smectic compressibility constantBsm is defined as

Bsm52a
]P~a!

]a
[2aS ]a~P!

]P D 21

, ~2.17!

where the last form is appropriate for the constant-press
ensemble. From Eqs.~2.15!, ~2.7!, and~2.17!,

Bsm5a
]2Ve f f~a!

]a2
[2aS ]2F~P!

]P2 D 21

. ~2.18!

Notably, by comparing Eqs.~2.9! and~2.12! with Eqs.~2.15!
and~2.18!, we see that the entropic effects (TÞ0) are incor-
porated by the use of the effectic potentialVe f f(a). These
effects dominate the equation of state and elastic constan
the sterically stabilized smectic phases discussed hereaft
the following section.

III. ENTROPICALLY STABILIZED SMECTIC PHASES

In this section, we first discuss the equation of state of
sterically stabilized manifolds, by using our constan
pressure ensemble. Next, we apply our approach to quan
tively investigate, by MC simulations, the sterically stab
lized 2D smectics comprised of long semiflexible molecul
For these two-dimensional system, we obtain here, in th
modynamic limitN→`, the universal constant characteri
ing the strength of the entropic repulsion between semifl
ible polymers. In sterically stabilized smectic phases,
bare interaction potential between manifolds is purely h
core,

V„hn11~x!2hn~x!…5H 0, hn11~x!2hn~x!.amin

`, hn11~x!2hn~x!,amin .
~3.1!

Here,amin is the thickness of the manifolds, see Fig. 1.~For
example, for semiflexible polymers in 2D smectics,amin is
their cross-sectional diameter.! We will first assume that
8-3
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amin50. ~Nonzeroamin is discussed later on in this section!
To proceed, we will use the fact that the stack model of S
II, Eqs. ~2.2!–~2.4!, has ford,4 ~as assumed hereafter! a
finite continuum limit Dx→0 for its correlation functions
and the equation of state, see the Appendix. Thex coordinate
can be thus treated as continuous, and the model can be
freely rescaled as

x5Zx x8, hn~x!5Zh hn8~x8!, ~3.2!

with arbitrary rescaling constantsZx and Zh . An important
special feature of the hard-core potential in Eq.~3.1! is that it
is invariant under the rescaling foramin50. Thus, the res-
caling maps the model in Eqs.~2.2!–~2.4! into an isomorphic
model with the parameters

P85Zx
dZhP, k85Zx

d24Zh
2k, ~3.3!

whereas, from Eqs.~2.1! and~3.2!, for the average period we
find

aS P

kBT
,

k

kBTD5 K hN~x!2h1~x!

N21 L
P,k,T

5ZhK hN8 ~x8!2h18~x8!

N21 L
P8,k8,T

5ZhaS P8

kBT
,

k8

kBTD . ~3.4!

The last line of Eq.~3.4! motivates to fix the rescaling con
stantsZx andZh by the condition

P8

kBT
5

k8

kBT
51, ~3.5!

yielding, from Eq.~3.3!,

Zx5
~kBT!1/(41d)k1/(41d)

P2/(41d)
, Zh5

~kBT!4/(41d)

kd/(41d)P(42d)/(41d)
,

~3.6!

and, from Eq.~3.4!,

a~P!5bN~d!~kBT!4/(41d)/kd/(41d)P(42d)/(41d).

Here,

bN~d!5a~1,1! ~3.7!

is a universalN-dependent constant. From Eq.~3.7!, bN(d)
is simply the average period of the stack model in E
~2.2!–~2.4! with all the parameters therein set to be 1 (P
→1, kBT→1, andk→1, as used in our simulations dis
cussed later on!. Thus, the smectic equation of state has
form

P~a!5aN~d!
~kBT!4/(42d)

kd/(42d)a(41d)/(42d)
, ~3.8!
05191
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aN~d!5„bN~d!…(41d)/(42d). ~3.9!

We would like to stress that, with appropriate values
bN(d) andaN(d), Eq. ~3.8! applies to stacks with anarbi-
trary numberN of flexible manifolds. Thus, for example, th
equation of state of the finite stack, Eq.~3.8!, differs from
that of the infinite one only through the value of th
N-dependent prefactoraN(d). By the aforementioned ex
pression fora(P) and Eq.~2.7!, the constant-pressure en
semble free energy density has the form

F~P!5bN~d!
41d

2d

~kBT!4/(41d)P2d/(41d)

kd/(41d)
1F~P50!.

~3.10!

Further, from Eqs.~3.10! and~2.16!, we obtain the effective
potential in the form

Ve f f~a!5aN~d!
42d

2d

~kBT!4/(42d)

kd/(42d)a2d/(42d)
1F~P50!.

~3.11!

In Eqs. ~3.10! and ~3.11!, F(P50) is the free manifold (P
→0) free energy. It is just a cutoff dependent constant
affecting the equation of state,Bsm, etc. It may be thus ig-
nored, as done in the following. From Eqs.~3.8! and~2.17!,
one easily finds the associated smectic compressibility

Bsm52a
]P~a!

]a
5aN~d!

41d

42d

~kBT!4/(42d)

kd/(42d)a(41d)/(42d)
.

~3.12!

In the above discussion, we set the thickness of the m
folds amin50. For a nonzeroamin , however, the problem
can be mappedexactlyto that withamin50, by making the
shift

hn~x!5h̄n~x!1namin . ~3.13!

From Eqs.~3.13! and ~3.1!, it is easy to see that the new
variablesh̄n(x) interact through the hard-core potential wi
amin50. So, the problem for$hn(x)% with aminÞ0 is
mapped into the problem for$h̄n(x)% with amin50. Conse-
quently, from Eq.~3.13!, we have, for the smectic-phase p
riod

a~P!5 K hN~x!2h1~x!

N21 L
aminÞ0

5K h̄N~x!2h̄1~x!

N21 L
amin50

1amin . ~3.14!

Thus,

a~P!5bN~d!
~kBT!4/(41d)

kd/(41d)P(42d)/(41d)
1amin . ~3.15!
8-4
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From Eq.~3.15!, the osmotic pressureP(a) and the effective
potentialVe f f(a) are given as in Eqs.~3.8! and~3.11!, with a
therein replaced bya2amin . This confirms the usually mad
heuristic assumption that finite thickness effects can be
corporated by a naive replacement ofa by a2amin @24#. We
stress however that, foraminÞ0, the smectic compressibility
Eq. ~2.17!, has the form

Bsm52a
]P~a!

]a
5aN~d!

41d

42d

~kBT!
4

~42d! a

~k!d/(42d)~a2amin!
8/(42d)

.

~3.16!

From Eq.~3.16!, we see that the replacementa→a2amin in
Eq. ~3.12! would yield an incorrect formula for the steric
smectic compressibility constantBsm.

As noted below Eq.~3.7!, to calculate the universal con
stantsbN(d) andaN(d), it suffices to study the system wit
amin50 and the parameterskBT, k, andP all set to be 1~in
the continuum limitDx→0): For this choice of the param
eters, the average stack perioda(P) is exactly equal to
bN(d). If bN(d) is known, the corresponding value o
aN(d) can be directly obtained from Eq.~3.9!. The average
period a(P) of the stacks of manifolds can be directly o
tained by MC simulation of the constant-pressure ensem
Hamiltonian; see Eqs.~2.1!–~2.5!. An essential part of the
MC simulation is achieving the continuum limitDx→0. It
has been accomplished by a careful discretization sch
discussed in the Appendix. Hereafter, we focus on 2D sta
of long semiflexible polymers (d51). The simulation results
for bN(1) and aN(1) for the stacks withN51,2, . . . ,10
polymers are listed in Table I. The table also contains
values ofb`(1) anda`(1) for an infinite number of poly-
mersN→`. These two thermodynamic limit constants a
obtained from the analytical treatment of the system p
sented in the Appendix. As discussed therein, one has
asymptotic expansion

TABLE I. Universal constantsbN(1) and aN(1)5@bN(1)#5/3

for 2D stacks ofN semiflexible polymers with hard-core repulsio
in the constant-pressure ensemble. The error bars are upper bo
to the actual errors induced by the ergodic averaging over a long
finite MC time. We also include the values forb`(1) anda`(1)
obtained by fitting to Eq.~3.17!, see Fig. 2.

N bN(1) aN(1)

2 0.645660.0009 0.48260.001
3 0.639960.0009 0.47560.001
4 0.63460.001 0.46860.001
5 0.63160.001 0.46460.001
6 0.62660.001 0.45860.002
7 0.62660.001 0.45860.002
8 0.62560.001 0.45660.002
9 0.62160.002 0.45260.002

10 0.61960.002 0.45060.002
` 0.604a 0.432a

aObtained by the extrapolation formula in Eq.~3.17!.
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bN~1!5b`~1!1
C(1)

N
1

C(3/2)

N3/2
1

C(2)

N2
1

C(5/2)

N5/2
1•••,

~3.17!

valid for largeN@1. By fitting the data from Table I to Eq
~3.17!, one can estimatebN(1) as well as the universal con
stants in the expansion Eq.~3.17!. By using this procedure
we estimateb`(1)>0.604, see Fig. 2. From Eq.~3.9!, this
corresponds to

a`~1!5@b`~1!#5/3>0.432, ~3.18!

with a .1% error~upper bound!, corresponding to the typi-
cal accuracy of the various data in Table I, set, as usual
performing the ergodic average over a long but finite M
time.

nds
ut

FIG. 2. Universal constantbN(1) and aN(1)5@bN(1)#5/3 for
2D stacks ofN semiflexible polymers. Dots are the MC simulatio
results. Solid line is the fit to Eq.~3.17! with b`(1)50.604, C(1)

50.216, andC(3/2)520.191. In making this fit we discarded th
point N52. Dashed line is the fit to Eq.~3.19! with b`(1)
50.610 andC150.465. In making this fit we also discarded th
point N52. We note that the fitting formulas in Eqs.~3.17! and
~3.19! are expected to work well for large enoughN ~see Sec. III
and the Appendix!. Still, as seen in the magnification insets, all te
simulations are well fit by both formulas. The figure document
high efficiency of the constant-pressure ensemble in approac
the thermodynamic limitN→`: Note that bothbN(1) andaN(1)
change only by about 5% asN changes between 4 and̀.
8-5
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In the Appendix, we also discuss an approximative clo
formula for bN(1), of theform

bN~1!5b`~1!1C1@CN~1!2C`~1!#. ~3.19!

Here,C1 is a universal constant, whereas

CN~1!5
1

N21 (
m51

N21 F12cosS m
p

ND G1/4

. ~3.20!

For N→`, CN(1)→C`(1).0.9071, as discussed in th
Appendix. As detailed in the Appendix, Eq.~3.19! is ob-
tained by a reasonable but somewhat uncontrolled appr
mation to bN(1). Still, our data could be well fit to Eq
~3.19!, with b`(1)>0.610 andC1>0.465, as documented i
Fig. 2.

Let us summarize our MC results on sterically stabiliz
2D smectic phases of long semiflexible molecules. In
practically interesting thermodynamic limitN→`, the
smectic equation of state has the form as in Eq.~3.15! with
d51 and b`(1)>0.604. Equivalently, the stack osmot
pressureP is as in Eq.~3.8! with d51, a therein replaced by
a2amin , and a`(1)5@b`(1)#5/3>0.432, according to ou
MC simulations. Finally, we emphasize the high efficiency
the constant-pressure ensemble in aproaching the therm
namic limit N→` behavior. Note that, for example, bot
bN(1) andaN(1) change by about only 5% asN changes
between 4 and̀ , see Table I and Fig. 2. Thus, already fro
the numerical simulations involving a few flexible man
folds, one can obtain the infinite smectic equation of st
within a few percent accuracy. In the following sections~see
Secs. IV A and IV C!, we discuss the physical reason beyo
this favorable feature of the constant-pressure ensemble
compare it to related earlier studies of smectic stacks.

IV. DISCUSSIONS

In the light of the results of previous sections, in th
section we first continue our discussions of entropica
~sterically! stabilized 2D smectics. We address in more de
their elasticity and the structural properties of topologi
defects~hairpin turn dislocations! in these phases in Sec
IV A. Next, in Sec. IV B, we will discuss entropic effects i
the situations in which the interactions between flexi
manifolds are not purely steric, by focusing on the syste
stabilized by electrostatic repulsion forces of the form app
priate for the quasi-2D smectics experimentally studied
DNA-cationic-lipid complexes@4#. In Sec. IV C, we discuss
entropically stabilized 2D smectic phases of semiflexi
polymers under externally applied tension~stacks of directed
polymers!. In Sec. IV D, we discuss the anomalous elastic
phenomena in 2D smectic phases of long semiflexible p
mers.

A. Sterically stabilized two-dimensional smectics

2D smectics with purely hard-core repulsion interacti
between neighboring polymers are 2D analogs of extensi
studied 3D lamellar phases of membranes repelling e
other with a short range repulsion@17,9–11#. Like the mem-
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brane phases, in the absence of long range repulsion, i
actions between long molecules are dominated by entro
effects. They yield an effective long range potential of t
form as in Eq.~3.12! with d51 anda therein replaced by
a2amin . In the experimentally interesting thermodynam
limit N→`, the prefactor (42d)aN(d)/2d in Eq. ~3.12! re-
duces to

A`5 3
2 a`~1!>0.648, ~4.1!

according to our simulations@see Eq.~3.18!#. In these sys-
tems,amin is the cross-sectional diameter of polymers rep
senting the smallest possible value of the smectic-phase
riod a. amin is typically much smaller than semiflexibl
polymer persistence lengthjp52k/kBT ~e.g., for DNA mol-
ecules,amin52 nm, whereasjp550 nm @3–5#!. Here, we
want to emphasize that Eq.~3.11!, with the universal prefac-
tor A`53a`(1)/2>0.648, is strictly appropriate only fo
the thermodynamic limit in which the number of polyme
N→` ~bulk behavior!. It is however instructive to recall tha
for N52 polymers, we find, within the constant-pressu
ensemble,A253a2(1)/2>0.723 ~see Table I!. This is only
10% larger than the thermodynamic limit valueA` in Eq.
~4.1!. For comparison, for a single (N51) polymer between
two hard walls at the distancea, one has the free energy as
Eq. ~3.11! with the prefactor A'1.1036, as found by
Burkhardt~by an exact transfer matrix calculation@20#!. This
is almost two times bigger than theN5` thermodynamic
limit value A` in Eq. ~4.1! obtained by using our constan
pressure ensemble. Notably, althoughA` must have the same
value in any ensemble, our constant pressure ensemble
vides significantly faster convergence to the thermodyna
limit N→` behavior than the ensemble ofN manifolds be-
tween hard walls. Apparently, from our Table I, we see th
the thermodynamic limit result is reached, within a few p
cent accuracy, already by using simulations involving sm
stacks of just few polymers fluctuating at constant press
P. Such a small stack, withP acting over the arc length o
the last and first polymer@see Eq.~2.2! and Fig. 1#, can be
thought~approximately! as a subsystem of an infinite sme
tic stack. Within this approximation, the pressureP models
the action of the infinite smectic on its small susystem, i
the small stack. The quick convergence toN→` behavior
well documents this assumption. In fact, the thermodyna
limit results are reasonably approximated~within a 10% ac-
curacy! already by using justN52 polymers fluctuating un-
der the pressureP. Apparently, this manifold-pair system
well approximates a bilayer subsystem of an infinite sme
stack, with the pressureP ~acting on the pair! mimicking the
interaction of the bilayer with neighboring manifolds in th
stack. This is in contrast to the previous related studies
have been based on considering a stack ofN manifolds con-
fined between two hard walls@20,22#. The two hard walls
may be thought of as immobileinfinitely rigid manifolds.
Obviously, such a system doesnot directly resemble a sub
system of an infinite smectic. On the other side, in o
constant-pressure ensemble, instead of the hard walls
have, at the bottom and at the top, the two manifolds hav
thesamebending rigidity as any other manifold in the stac
8-6
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As depicted in Fig. 1, the shapes of these boundary m
folds are thus free to fluctuate under the influence of nea
manifolds and the externally applied pressureP. This pres-
sure applied to boundary manifolds approximately mod
the action of the manifolds that would be present, in an
finite smectic stack, above and below the stack in Fig. 1. D
to these physical reasons, our constant-pressure ense
provides a faster convergence to the thermodynamic l
behavior, compared to the studies employing hard walls
boundaries~see also Sec. IV C and Ref.@28# for further dis-
cussion!.

Various bulk properties of the sterically stabilized 2
smectics are sensitive to the actual value ofA` given by Eq.
~4.1!. Thus, the smectic compressibility constant is giv
here by Eq.~3.16! for d51 @then the prefactor therein re
duces to 5a`(1)/3510A`/950.720] We note that, wherea
the osmotic pressureP and the smectic compressibilityBsm
are both sensitive to the value ofA` , their ratio is not,

V5
P

Bsm
5

3

5 S 12
amin

a D . ~4.2!

Still, most of the interesting materials properties here dep
on the actual value ofA` . For example, the smectic penetr
tion lengthl5(Ksm/Bsm)1/2 is, from Eqs.~3.16! and~2.11!,

l5
3

A10A`

~jp/2!2/3a1/3S 12
amin

a D 4/3

51.19~jp/2!2/3a1/3S 12
amin

a D 4/3

. ~4.3!

Many other significant structural properties of these pha
also depend on the actual value ofA` . An interesting ex-
ample for this are the properties of hairpin turn dislocatio
recently elucidated in Ref.@8#. These dislocations have
large void in their cores, with the size along the smectiz
direction Deq@a, and the lateral size along the smecticx
directionLeq@a @8#. From the results of Sec. V of Ref.@8#,
and our Eq.~4.1!, we find

Deq5C4/5S 5

3D 1/5S 3

A10A`
D 3/5

~jp/2!2/5~a2amin!
3/5

51.42~jp/2!2/5~a2amin!
3/5, ~4.4!

Leq5C2/5S 5

3D 3/5S 3

A10A`
D 4/5

~jp/2!8/15~a2amin!
7/15

51.67~jp/2!8/15~a2amin!
7/15, ~4.5!

with C'1.198@8# andA` as in our Eq.~4.1!. Another prop-
erty of these dislocation cores is the radius of the void in
face curvature~induced by the osmotic pressure! Req @8#.
From the results of Ref.@8# and our Eq.~4.1!,
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A10A`

~jp/2!2/3~a2amin!
1/3

51.98~jp/2!2/3~a 2amin!
1/3. ~4.6!

Likewise, for the hairpin dislocation energy-temperature
tio, we find

Ehp

2kBT
5C6/5S 5

3D 4/5

~A10 A`/3!3/5S jp/2

a2amin
D 3/5

51.69S jp/2

a2amin
D 3/5

. ~4.7!

We remark that the results in Eqs.~4.4!–~4.7! are applicable
in the range of smectic periodsa for which Eq.~4.4! yields
Deq.a. From Eq.~4.4!, we find

Deq

a
5C4/5S 5

3D 1/5S 3

A10A`
D 3/5S jp/2

a D 2/5S 12
amin

a D 3/5

51.42 S jp/2

a D 2/5S 12
amin

a D 3/5

, ~4.8!

valid in the range ofa in which Deq /a.1 @8#. From Eq.
~4.8!, theDeq /a ratio reaches its maximum value

S Deq

a D
max

5C4/5S 3

25D
2/5S 3

A10 A`
D 3/5S jp

amin
D 2/5

50.55S jp

amin
D

2
5
, ~4.9!

when the smectic perioda reaches the characteristic valu

ao 5 5
2 amin . By Eq. ~4.9!, this maximum is controlled by

the ratio jp /amin , which is large for realistic semiflexible
polymers. From Eqs.~4.8! and~4.9!, the equilibrium size of
hairpin turnsDeq is generally larger than the smectic-pha
perioda. The ratioDeq /a→1 only in two characteristic lim-
its: for small periodsa,amin8 , with (amin8 2amin)/amin8
50.56 (2amin /jp)2/3. The other limit corresponds to
highly swollen phase with the perioda given by amax

5(C2/2)(5/3)1/2(3/A10 A`)3/2jp51.80jp , at the border
line for the phase transition to the isotropic liquid state
polymers~in analogy to the 3D fluid membrane phases@23#!.
Close to this transition, from Eq.~4.7! with a'jp , one has
Ehp'kBT, and the dislocations ensemble becomes dense
accord with the onset of a nearby isotropic liquid phase
should be stressed though that applying results such as
~4.4!–~4.9! to a situation witha;jp yields only sound quali-
tative conclusions: The basic form of the entropic repuls
~3.11! is exact only in the limita!jp . As the phase perioda
approaches the polymer persistence lengthjp , crumpling ef-
fects that soften the bending rigidity of semiflexible pol
mers come into play@11,21#. These effects are ignored her
by using the harmonic model for bending elasticity~see Sec.
II !. Whereas an investigation of these effects is beyond
8-7
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scope here (a!jp), we note that detailed discussions of t
crumpling effects in fluid membrane phases are presente
Refs.@11,23#.

B. DNA-cationic-lipid complexes

A number of recent experimental studies of semiflexi
polymers phases have addessed the quasi-two-dimens
smectic phases of DNA molucules with periodsa!jp @3–5#.
Notably, however, in these systems, the interactions betw
the semiflexible polymers are definitelynot purely hard core
~steric!. These systems are complexes of longl-DNA mol-
ecules mixed with cationic-lipid molecules for the purpose
modern gene therapy techniques@3#. These complexes hav
been the subjects of a number of recent experimental
theoretical studies@3–8#. Frequently, the complexes form
3D lamellar membrane phase withl-DNA molecules inter-
calated in galleries between lipid membranes@3,4#. Interac-
tions between DNA molecules in different galleries are e
perimentally evidenced to be weak. To a go
approximation, one can consider these so-called slid
phases@6,7# as stacks of weakly interacting 2D smectics
which DNA molecules play the role of smectic layers. The
quasi 2D smectic phases are stabilized by complex repul
interactions of electrostatic origin@3,4#. Their detailed form
is not well known. To discuss the interplay between the
tropic and electrostatic effects in these phases, we cons
the following semiempirical form for the~electrostatic! os-
motic pressure between DNA molecules:

P(es)~a!5Ce

kBT

l B~a2aes!
, Ce'7.260.6, ~4.10!

suggested by Saldittet al., Ref. @4#. Here,l B is the so-called
Bjerrum length; l B'0.7 nm in water at room temperatur
aes in Eq. ~4.10! is an electrostatic diameter of DNA;aes
'0.4 nm at most, that is, one-fifth of the actual diameter
DNA ~or even smaller@4#!, which is amin'2 nm. The os-
motic pressureP(es) in Eq. ~4.10! would correspond to the
bare interpolymer potential of the form

V(es)~a!52Ce

kBT

l B
ln~a2aes!. ~4.11!

In the absence of polymer shape fluctuations, from E
~4.10! and ~2.9!, the smectic compressibility modulus
given here by

Bsm5Ce

kBTa

l B~a2aes!
2

. ~4.12!

The quantityV in Eq. ~4.2! here assumes the simple form
V5P/Bsm512aes/a. As a.amin'5aes, V is '1
in practical situations. The smectic penetration len
here is l(a)5(Ksm/Bsm)1/25lo(12aes/a), with lo

5Ajpl B /2Ce. As a.amin'5aes, to a good approximation
l(a)'lo andV'1. Notably,l here does not significantly
depend on the phase perioda, in marked contrast to the
penetration depth in entropically stabilized phases@see Eq.
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~4.3!#. The above bare properties would approximate the
tual ~renormalized! smectic properties only for the situation
in which the entropic effects due to local~mesoscopic! poly-
mer fluctuations could be ignored. It has been suggested
this was the case, at least in the previously studied syst
@4#. However, a more quantitative support for this suggest
was missing, such as the actual value of the steric coup
constantA`53a`/2, Eq. ~4.1!, calculated in the presen
work. To discuss the competition of steric and electrosta
effects, we note that at short enough inter-DNA separati
a, the steric effect must dominate: Note that, for example,
steric pressureP(st)(a) @see Eq.~3.8! with a therein replaced
by a2amin] diverges asa→amin , whereas the electrostati
pressureP(es) in Eq. ~4.10! remains finite fora5amin .
Clearly, the steric pressure will dominate in a range of sm
a, for a,a* , with a* signifying a crossover length scal
between the steric and electrostatic regimes.a* can be esti-
mated simply, from the conditionP(st)(a* )5P(es)(a* ). By
using here Eqs.~3.8! ~with d51 and a replaced bya
2amin) and ~4.10!, one finds that

a*
amin

511z* , ~4.13!

with

z* [S a`~1!

Ce

l B

amin
2/3 ~jp/2!1/3D 3/5S 12

aes

amin
D 3/5

!1.

~4.14!

We thus find, forjp550 nm, thatz* '0.05. Thus, the cross
over length scalea* is only some 5% larger than the DNA
diameteramin . At thus small inter-DNA distances, the he
lixes of neighboring DNA would couple. Such a locking ma
tranform the 2D smectic into a 2D solid. Overall, these e
mates support the conjecture of the experimental studies
DNA-cationic-lipid complexes@4#, that electrostatic effects
dominate over the entropic effects in the investigated ra
of smectic-phase periodsa. It should be noted though tha
steric effects may become dominantalso at large interpoly-
mer separationsa, at which the osmotic pressure law in E
~4.10!, and the corresponding logarithmic form of th
polymer-polymer repulsion Eq.~4.11!, breaks down and be
comes replaced by a faster decay law with increasinga: For
bare osmotic pressuresP(a);1/ag decaying faster than the
steric osmotic pressure in Eq.~3.8! @i.e., g.5/3 for d51],
the largea behavior must be dominated by the steric press
Pst(a);1/a5/3. Whereas such a steric regime has not be
reached in the previous studies in DNA-lipid complexes,
plausible existence appears to be an interesting subjec
future experimental investigations of these and other rela
systems.

C. Stacks ofN nonintersecting lines with tension

In this section, we compare the 2D stacks ofN semiflex-
ible tensionless polymers with bending rigidityk with the
sterically stabilized stacks ofN nonintersecting lines with
tension. As discussed here, in the constant-pressure
8-8
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semble, the problem with tension is exactly solvable forN
52 andN5`. This provides a useful reference point for
better insight into the constant-pressure ensemble advoc
in this paper. Besides, the stacks of lines with tension~‘‘di-
rected polymers’’! are interesting in their own right. In par
ticular, they represent the actual model for semiflexible po
mer phases under external tensional force that is applie
polymers. For large enough polymer separationsa, the en-
tropic repulsion between the polymers is dominated by t
sional effects rather than by bending rigidity. In 2D smec
system, the presence of the tensions adds the term

Htens5 (
n51

N E dx
s

2S dhn~x!

dx D 2

~4.15!

to the smectic stack Hamiltonian in Eq.~2.2!. In the absence
of tension, fors50, we have the osmotic pressure law as
Eq. ~3.8! with d51 @for simplicity, we will setamin50 in
this section#, with the universal constantsaN(1) calculated
in Sec. III ~Table I!. In particular, for the stacks withN52
and N5` polymers, we founda2(1)>0.482 anda`(1)
>0.432 in the constant-pressure ensemble. In the presen
tensionsÞ0, the long scale thermal fluctuations of flexib
polymers are weakened, and, at large enougha, the pressure
law as in Eq.~3.8! is replaced by a faster decaying pressu
law, of the form

Pst~a!5aN
(s)~1!

~kBT!2

sa3 . ~4.16!

Equation~4.16!, with the universal constantaN
(s)(1), can be

established by reasonings similar to those of Sec. III, h
applied to the stack of directed polymers withk50 ands
Þ0. ForkÞ0 andsÞ0, there is a crossover length scal

as;
~kBT!2k

s3 , ~4.17!

such that fora!as , the bending elasticityk dominates and
Eq. ~3.8! applies~with d51), whereas fora@as the tension
s dominates and Eq.~4.16! applies ford51. Universal con-
stants of the tension dominated steric pressure are act
exactly known in the ensemble ofN nonintersecting directed
polymers~with k50 andsÞ0) confined between two har
walls that can be mapped into the 1D gas ofN free fermions
confined between the two hard walls@25,22#. By using this
mappingand the equivalence between the ensembles, wh
appliesonly in the thermodynamic limitN→`, we have

a`
(s)~1!5

p2

3
>3.290, ~4.18!

for both ensembles.
On the other side, the constant-pressure ensemble

N52 polymers is also exactly solvable fork50 and s
Þ0. To see this, let us consider its constant-pressure Ha
tonian
05191
ted

-
to

-

of

e

re

lly

h

ith

il-

Hsm~h1 ,h2!5E dxH s

2 S dh1~x!

dx D 2

1
k

2 S d2h1~x!

dx2 D 2

1
s

2 S dh2~x!

dx D 2

1
k

2 S d2h2~x!

dx2 D 2

1Vhc„h2~x!

2h1~x!…1P@h2~x!2h1~x!#J , ~4.19!

corresponding to the smectic stack Hamiltonian, Eqs.~2.2!–
~2.4!, for N52 and s50. To proceed, we introduce new
variables defined by

r ~x!5h2~x!2h1~x!, R~x!5
h1~x!1h2~x!

2
, ~4.20!

the ‘‘relative coordinate’’ and ‘‘center of mass coordinate
respectively. In terms of these coordinates,Hsm(h1 ,h2) in
Eq. ~4.19! seperates into a sum of two Hamiltonians,

Hsm~h1 ,h2!5Hrel~r !1Hc.m.~R!, ~4.21!

with the relative Hamiltonian

Hrel~r !5E dxH s

4 S dr~x!

dx D 2

1
k

4 S d2r ~x!

dx2 D 2

1Vhc~r ~x!!1Pr~x!J ~4.22!

and the harmonic center-of-mass Hamiltonian

Hc.m.~R!5E dxH sS dR~x!

dx D 2

1kS d2R~x!

dx2 D 2J , ~4.23!

which is trivially solvable. However, to find the equation
state, one needs to solve a nontrivial statistical mecha
problem associated with the relative Hamiltonian Eq.~4.22!,
to find the average

a5^h2~x!2h1~x!&5^r ~x!& ~4.24!

as the function of the pressureP. To study the tension domi
nated regime@Eq. ~4.16!#, it suffices to setk50 in Eq.
~4.22!. Such a problem can be analytically handled by t
standard transfer matrix method@26#, as discussed before b
Netz @8#, by mapping it into a one-dimensional quantum m
chanics problem@27#. For the constant-pressure free ener
Netz finds

FN52~P!5CAi

~kBT!2/3 P2/3

s1/3
1FN52~0!, ~4.25!

with CAi>2.337 being thefirst zero of the Airy function.
From Eqs.~4.25! and ~2.7!,

a5bN
(s)~1!

~kBT!2/3

s1/3P1/3
, ~4.26!

with, for N52,
8-9
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b2
(s)~1!5 2

3 CAi>1.558. ~4.27!

From Eq.~4.26!, one recovers the pressure law in Eq.~4.16!
with

aN
(s)~1!5@bN

(s)~1!#3, ~4.28!

and thus, forN52, from Eq.~4.27!,

a2
(s)~1!5~ 2

3 CAi !
3>3.783. ~4.29!

From Eq.~4.16!, Eq. ~4.26! applies to anyN, with the uni-
versal constantsbN

(s)(1) andaN
(s)(1) related as in Eq.~4.28!.

In particular, in the thermodynamic limitN→`,

b`
(s)~1!5@a`

(s)~1!#1/35S p2

3 D
1
3
>1.487, ~4.30!

using the exact result in Eq.~4.18!. By comparing Eq.~4.30!,
for N→`, with Eq. ~4.27!, for N52, we see that, for a
given pressureP, the average interpolymer seperationa in
Eq. ~4.26! is decreased by less than 5% by going from
bilayer system (N52) to the bulk system (N5`) fluctuat-
ing under the constant pressureP. This illustrates high effi-
ciency of the constant-pressure ensemble in studying
thermodynamic limitN→` behavior. Similar efficiency has
been documented before, in Sec. III, for 2D smectics with
externally applied tension~see Fig. 2 and Table I!. Thus, this
favorable feature appears to be generic to the const
pressure ensemble advocated in this paper. The physica
son for this has been anticipated before, at the beginnin
Sec. IV A. The stacks ofN manifolds fluctuating under fixed
isotropic pressureP highly resemble subsystems of an in
nite smectic, with the pressureP approximately modeling the
action of the infinite system on the small subsystem oN
smectic layers. In general, such a subsystem can be ex
described by aneffectivesubsystem Hamiltonian that ma
be, in principle, found by integrating out of the infinite sme
tic partition function the layers not belonging to the sm
subsystem ofN smectic layers, as we detail elsewhere@28#.
Here we note that this effective small stack Hamiltonian
well approximated by the constant-pressure Hamiltonian
Sec. II, as evidenced by the fast convergence to the ther
dynamic limit behavior documented here for semiflexib
polymers smectics~with tension! and in Sec. III ~without
tension!. This feature of the constant-pressure ensembl
documented also by the studies of the sterically stabili
stacks of tensionless membranes (d52). Thus, from Netz’s
simulations of N52 membranes under constant press
~Sec. III!, b2(2)5@a2(2)#1/3>0.614, see Ref.@8#. This is
only few percent bigger than the estimate for the thermo
namic limit N5`, b`(2)5@a`(2)#1/3>0.596, obtained
from the simulations of Gompper and Kroll of membra
stacks confined between two hard walls@22#. @By the equiva-
lence of ensembles in the thermodynamicN5` limit, the
same value ofb`(2) would be obtained in the constan
pressure ensemble.# It is interesting to note that thisb`(2)
for three-dimensional membrane stacks is, curiously, ne
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the same as ourb`(1) for two-dimensional semiflexible
polymer stacks, see Sec. III. Thus

b`~2!>b`~1!> 3
5 . ~4.31!

Note however that, from Eq.~3.9!, the corresponding value
of a`(d) are substantially different ford51 andd52. It
would be interesting to understand the reasons beyond
~approximative! superuniversality reasons ofbN(d) sug-
gested by Eq.~4.31!.

D. Anomalous elasticity

2D and 3D smecticsA are known to have an anomalou
elastic behavior at long length scales@2,16#. It qualititavely
alters the character of smectic fluctuation at scales lon
than certain Ginzburg length scalesjGX and jGZ , with, for
2D smectics@2#,

jGX58p
~Ksm!3/2

kBTBsm
, jGZ5

~jGX!2

l
, ~4.32!

l5AKsm/Bsm. For 2D smectic phases of long semiflexib
molecules with bending rigidityk5kBTjp/2, from Eqs.
~2.11! and ~4.32!,

jGX54p
jp

a
l, jGZ516p2S jp

a D 2

l. ~4.33!

For the electrostatically stabilized quasi-2d smectics in the
DNA-cationic-lipid complex~see Sec. IV B!, l'1.6 nm and
jp'50 nm, whereas the perioda is 3–5 nm. Thus, from Eq.
~4.33!, the anomalous length scales are large compared to
smectic-phase period (jGZ;104a), making it hard to ob-
serve the anomalous effects in the available phase m
odomains in these system. On the other side, for the s
cally stabilized phases~Sec. IV A!, with our quantitative
result forl in Eq. ~4.3!, we find, from Eq.~4.33!,

jGX

a
5

4p

22/3

3

A10A`

S jp

a D 5/3S 12
amin

a D 4/3

59.39S jp

a D 5/3S 12
amin

a D 4/3

~4.34!

and

jGZ

a
5

16p2

22/3

3

A10A`

S jp

a D 8/3S 12
amin

a D 4/3

5117.97S jp

a D 8/3S 12
amin

a D 4/3

. ~4.35!

The ratios in Eqs.~4.34! and ~4.35! have an interesting de
pendence ona: They both reach amaximumat characteristic
values of the smectic perioda; (jGX /a)max;(jp /amin)

5/3

for a59amin/5, whereas (jGZ /a)max;(jp /amin)
8/3 for a

53amin/2. Away from these maxima, the ratios in Eq
~4.34! and~4.35! drop down. Thus, both ratios approach t
valuesO(102) for a;jp , i.e., close to the transition to th
8-10
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isotropic liquid phase. In this limit, however, the dislocatio
ensemble becomes dense~see Sec. IV A, and Ref.@8#!, and
the nematic charater of 2D smecticlike systems@1# would
preclude the existence of the length scale range with
anomalous elastic behavior. On the other side, the ratio
Eqs.~4.34! and~4.35! can be both made small in the limit o
small smectic periods. Note that, interestingly, both rat
actuallyvanishfor a→amin . This phenomenon is caused b
the diverging behavior ofBsm(a) for a→amin , see Eq.
~3.16!. From Eq.~4.35!, for example, the ratiojGZ /a→1 for
a→(11s)amin , with

s'S 22/3

16p2

A10A`

3 D 3/4S amin

jp
D 2

50.028S amin

jp
D 2

~4.36!

for the realistic semiflexible molecules, withamin!jp . For
the DNA molecules, for example, withjp'50amin , from
Eq. ~4.36!, s;1025. That is, jGZ /a→1 only for a very
small separation between DNA helixes. Again, as noted
the discussion below Eq.~4.14!, such separations are almo
certainly inaccessable within the range of the smectic ph
of DNA molecules. Within the smectic range, one must
quire thata2amin is some 10% or so larger thanamin , to
avoid crystalization into a 2D solid of locked DNA helixe
Still, even with a'1.1amin , the ratios in Eqs.~4.34! and
~4.35! would remain large forjp /a'jp /amin525, as for
DNA. Overall, an experimental observation of the anom
lous elasticity effects may be hard to achieve in both st
cally and, as noted before, electrostatically stabilized pha
of long semiflexible molecules, such as DNA. The abo
large estimates forjGZ /a, for example, show that one mu
have at disposal large monodomains of aligned DNA m
ecules, which may be hard to realize in the experime
@3–5#.
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APPENDIX

In this appendix, we will first analytically discuss the a
proach to the thermodynamic limit behavior,N→`. We de-
rive here the formulas used in Sec. III to extract this behav
from the simulations done with a finite numberN of flexible
polymers ~see the end of Sec. III!. We will discuss theN
dependence of the average smectic-phase period Eq.~2.1!.
For this purpose, we consider here interpolymer potent
V(r ) (r 5hn112hn) such thatVnet(r )5V(r )1Pr has an
analytic minimum atr 5r 0, see Eq.~2.8! @we discuss, later
on, the situations withVnet(r ) having a nonanalytic mini-
mum#. ExpandingVnet in powers ofr 2r 0 yields, from Eq.
~2.8!,
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n51

N21 E ddx(
k52

`
bk

k!
@hn11~x!2hn~x!2r 0#k,

~A1!

with bk5V(k)(r 0). Introducing here the smectic phono
variables, viahn(x)5nr01un(x), reduces the original stac
Hamiltonian~2.2! to

Hsm5H01Hanh ~A2!

with

H05E ddxF (
n51

N
k

2
@nun~x!#2

1 (
n51

N21
b2

2
@un11~x!2un~x!#2G , ~A3!

the harmonic part of the smectic Hamiltonian, and

Hanh5 (
n51

N21 E ddx(
k53

`
bk

k!
@un11~x!2un~x!#k, ~A4!

the anharmonic part of the Hamiltonian. For the avera
smectic period Eq.~2.1!, we have

aN5 K hN2h1

N21 L 5r 01 K uN2u1

N21 L . ~A5!

In the absence of the anharmonic terms, Eq.~A4!, the second
term in Eq. ~A5! vanishes. Thus, within the harmonic a
proximation,a5r 0, i.e., a is N independent. TheN depen-
dence ofa is thus an effect of the anharmonic terms in E
~A4!. They can be handled systematically, first by carefu
diagonalizing the harmonic smectic Hamiltonain Eq.~A3!,
and then using the standard perturbation theory, the loop
pansion@29#. For d,4, this perturbation theory, to all or
ders, has a finite continuum limitLq;1/Dx→`; see, e.g.,
Eq. ~A6! below ~see also the discussion in Ref.@26#!. We
assume this limit in Eqs.~A7!–~A12! hereafter. Thus, for
example, by keeping in Eq.~A4! only the cubic term (k
53), we find, to one loop order~‘‘tadpole’’ diagram!

aN5r 02
N

N21

b3kBT

2b2
E ddq

~2p!d

1

N

3 (
m51

N21 2F12cosS m
p

ND G
kq412b2F12cosS m

p

ND G , ~A6!

for the stack ofN d-dimensional manifolds. Integrating Eq
~A6! over q yields, ford,4,

aN5r 01AdCN~d!. ~A7!

Here,Ad is anN-independent quantity (Ad;2b3), whereas
8-11
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CN~d!5
1

N21 (
m51

N21 F12cosS m
p

ND Gd/4

~A8!

is a dimensionless quantity responsible for theN dependence
of the average smectic period in Eq.~A7!. It has a finite limit
for N→`,

C`~d!5E
0

p dQ

p
@12cos~Q!#d/4. ~A9!

Equation~A7! can be then, more suggestively, rewritten a

aN5a`1Ad@CN~d!2C`~d!#, ~A10!

making it manifest thataN→a` asN→`. For example, for
2D stacks of semiflexible polymers (d51), C`(1)
521/4B(1/2,3/4)/p>0.9071, whereas, from Eq.~A8!,
C2(d)51 ~for any d). These numbers exemplify the fa
that, forAd;2b3.0, the average smectic periodaN in Eq.
~A10! decreases with increasingN, @30#. This is in accord
with the data in Table I, by recalling that the constantbN(1)
therein is identical toaN for P5k5kBT51 ~see Sec. III!.
Thus, from Eq.~A10!,

bN~d!5b`~d!1Cd@CN~d!2C`~d!# ~A11!

for the sterically stabilized phases. Here,Cd is, like bN(d), a
universal constant. As documented in Sec. III~see Fig. 2!,
for the cased51, Eq.~A11! provides a good fit to our dat
obtained with different values of N. In relation to Eq.~A11!,
few remarks are in order.

~i! Equation~A11! is valid, to one-loop order, only for the
model ~A2! truncted to the cubic order. Even though E
~A11! provides a good fit to the data of Sec. III~see Fig. 2!,
it is only an approximation. The full model contains quart
quintic, etc. anharmonicities@see Eq.~A4!#. Also, in the full
treatment, one would need to do the loop expansion to
orders~a difficult, if not impossible, task!. Still, an inspection
of the perturbation expansion shows that, ford51,

bN~1!5b`~a!1
C(1)

N
1

C(3/2)

N3/2
1

C(2)

N2
1

C(5/2)

N5/2
1•••,

~A12!

as can be inferred~also! by asymptotically evaluating the
sum in Eq.~A8! for d51 andN@1. Note that, ford51, the
expansion contains both integer and half-integer power
1/N.

~ii ! The reasoning leading to Eq.~A7! assumes that on
deals withVnet(r )5V(r )1Pr having an analytic minimum
Apparently, this is not the case ifV(r ) is the hard-core po-
tential Vhc(r ), i.e., in the sterically stabilized phases~Sec.
III !. Nonetheless, it is to be generally expected that thelarge
N behavior in these system can be handled by a suit
coarse-grainedeffective potential having an analytic form
similar to that of the effective potential discussed in Sec.
see Eqs.~3.11! @31#. The above reasoning can be then a
plied to such a coarse-grained model, yielding again the
pansion in Eq.~A12!. Like bN , the numerical constants i
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this expansion must be universal. Overall, for large enou
values ofN, the expansion~A12! should be applicable also t
the sterically stabilized 2D stack of semiflexible polymers,
documented in Sec. III, see Fig. 2.

We now turn to the discussion of the discretizati
scheme used in our Monte Carlo simulation by focusing
the most subtle part related to the semiflexible polymer be
ing energy. In the continuum model, it has the familiar for

Hbend5
k

2E dxh~x!S ]2

]x2D 2

h~x!5
k

2E dq

2p
q4uh̃~q!u2

~A13!

for each of the polymers in the stack. The straightforwa
discretization procedure~which is actuallynot used in the
calculations presented in this paper! is to replace Eq.~A13!
with

Hbend
disc 5

k

2~Dx!3(
k

hk~D l !
2hk . ~A14!

Here, as usual,hk5h(x)ux5kDx and Dx is the size of the
polymer ‘‘unit cell’’ ~physically, the monomer size!. D l in
Eq. ~A14! stands for the ordinary lattice Laplacian:D lhk
5hk1122hk1hk21, and, thus,

~D l !
2hk5hk2224hk2116hk24hk111hk12 .

~A15!

This simple discretization scheme can be shown to prod
an ‘‘error’’ in equilibrium averages~relative to the continuum
model, Dx50) that is proportional to (Dx)2. This can be
seen by calculating momentum integrals such as those in
~A6!, with the q4 therein replaced by its lattice version im
plied by Eq.~A14!, yielding

q4→~ql
2!25F2@12cos~qDx!#

~Dx!2 G2

, ~A16!

with uqu,p/Dx, the momentum cutoff. The actual cause
the (Dx)2 error is not due to the presence of this cutof
Rather, the error of this magnitude emerges due to the
that the right hand side of Eq.~A16! is not exactlyq4. By
expanding it, one finds

~ql
2!25q41constq6~Dx!21•••, ~A17!

eventually triggering the (Dx)2 error. Fortunately, it is pos-
sible to further diminish the error magnitude below (Dx)2.
For this purpose, in our simulation, we replace the (D l)

2

operator in Eq.~A14! with the lattice operator defined by

~D l !
22 1

6 ~D l !
3. ~A18!

The marked feature of the new operator in Eq.~A18! is that
it yields, in the momentum representation†D l→2ql

25
22@12cos(Dxq)#/(Dx)2

‡, the expansion

~ql
2!21

1

6
~ql

2!35q4103q62
7

235!
q8~Dx!41•••,

~A19!
8-12
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with a vanishing q6 term. From Eq.~A19!, one may naively
expect that the discretization error is now;(Dx)4. This,
however, turns out to be wrong, as can be checked by ca
lating the momentum integrals such as those in Eq.~A6!,
with (q2)2 therein replaced by (ql

2)21(ql
2)3/6, †with ql

2

52@12cos(qDx)#/(Dx)2, as noted above‡. This calculation
shows that the actual error is;(Dx)3 rather than (Dx)4.
Still, with the more sophisticated discretization scheme
Eq. ~A18!, one may get a considerable improvement over
simple scheme in Eq.~A14!. In fact, in our MC calculations
~Sec. III!, with k;1, by employing the operator in Eq
~A18!, the relative discretization error could have been ma
smaller than 0.5% by usingDx51/3. We checked this erro
level by estimating it analytically along the lines briefly ou
lined above. Additionally, we checked this error by runni
test simulations with a smallerDx51/6. Throughout the
simulations, the discretization error level was kept sma
than the standard MC statistical error~due to averaging ove
a finite MC time!, which has 1% level~upper bound! for the
simulations in Sec. III.

Finally, we comment on the statistical error of our M
simulations~see the Table I!. As usual, the equilibrium aver
age smectic period Eq.~2.1! is obtained from the time~er-
godic! averages of the ‘‘instantaneous’’ smectic periods t
are calculated at each MC cycle~1 MC cycle corresponds to
sequential trial updates of all degrees of freedom once,
represents the natural time unit for MC dynamics!. To esti-
mate the statistical error for a MC simulation withtmax
cycles, the time average of the smectic period is calcula
seperately for ten time subintervals, each withtmax/10
cycles. The root-mean-square variance of these ten aver
from different subintervals, represents the statistical erro
a MC simulation done over asingle subintervalwith tmax/10
cycles. These errors of subinterval averages are the e
reported in the Table I. Thus, the factual statistical error
theentiresimulation withtmax MC cycles is actuallysmaller
by the factorA10 than that reported in Table I. An essent
condition here is that there are no substantial autocorr
tions between different time subintervals. In other words,
c
a
th

ni
e
ia
.
c
th
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e
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autocorrelation function of the instantaneous smectic peri
must have its time range smaller thantmax/10 cycles. The
autocorrelation time range corresponds to the longest t
scale in the system. It is, in fact, the lifetime of theslowest
mode of the system. This time scale generally increases
increasing number of manifoldsN, because smectics ar
massless systems, without intrinsic long space-time sca
At this point, it is useful to recall that the Monte Carlo dy
namics is in fact qualitatively the same as the Langevin
namics~Type A model, see Ref.@29#!. This relation can be
used to estimate the longest mode lifetime for a system w
any number of manifoldsN. For the smectic Hamiltonian in
Eq. ~A3!, we thus find an interesting relation for this longe
mode lifetime,

t~N!5
t~2!

12cosS p

ND , ~A20!

for the system withN manifolds. Equation~A20! relates the
longest mode lifetime for the system withN manifolds to
that with twp manifolds,t(2), which is about 500 cycles, a
obtained by calculating the autocorrelation function from o
MC data forN52. Thus, by Eq.~A20!, for our largest simu-
lation with N510 manifolds,t(10) is about 10 000 MC
cycles. Withtmax533106 cycles, as used in our simulation
this value oft(10) is substantially shorter than the size of t
aforementioned time subintervals,tmax/10533105. The sta-
tistical error of the average smectic period can be shown~by
using the aforementioned relationship the Langevin dyna
ics! to be proportional toAN/tmaxL

d for tmax@t(N) (L is
the lateral smectic size, here, the length of each semiflex
polymer!. For uniformity, we used the sametmax533106

and L55000Dx for all simulated systems with differentN.
Thus, as is also evident from the Table I, the statistical err
increase with increasingN. Still, even for the largestN
510, this error is within 1%~see theN510 line of Table I,
and recall that the factual error is smaller than the error
ported therein by the factorA10, as noted above!.
ce

ys.

ett.
a-

,

E

se-
en-

on
@1# J. Toner and D.R. Nelson, Phys. Rev. B23, 316 ~1981!.
@2# L. Golubović and Z.-G. Wang, Phys. Rev. Lett.69, 2535

~1992!; Phys. Rev. E49, 2567~1994!. The anomalous smecti
elasticity effects, discussed in those works in 2D smectics,
actually supressed in the smectic stack model of Sec. II, by
use of vertical distances@5hn11(x)2hn11(x)# in the inter-
manifold interaction potentials in Eq.~2.3!. Whereas this ap-
proximation still yields the standard Landau-Peierls harmo
smectic Hamiltonian~2.13!, the anharmonic terms causing th
anomalous elasticity are actually discarded by the artific
symmetry breaking caused by the use of vertical distances
the present paper, we leave beyond our scope the full sme
model that includes also the anharmonicities causing
anomalous elasticity. This is, in part, because the anoma
effects are estimated to be weak in the currently studied
perimental system, as discussed in Sec. IV D~see also Refs.
@7,8#!.
re
e

c

l
In
tic
e
us
x-

@3# J.O. Radler, I. Koltover, T. Saldit, and C.R. Safinya, Scien
275, 810 ~1997!.

@4# T. Salditt, I. Koltover, J.O. Radler, and C.R. Safinya, Ph
Rev. Lett.79, 2582~1997!; Phys. Rev. E58, 889 ~1998!.

@5# F. Artzner, R. Zantl, G. Rapp, and J.O. Radler, Phys. Rev. L
81, 5015 ~1998!; R. Zantl, F. Artzner, G. Rapp, and J.O. R
dler, Europhys. Lett.45, 90 ~1990!.
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