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Smectic phases of semiflexible manifolds: Constant-pressure ensemble
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We pursue the constant-pressure ensemble approach to elucidate the statistical mechanics of the smectic
phases of semiflexible manifolds, such as two-dimensional smectic phases of long semiflexible polymers and
three-dimensional lamellar fluid membrane phases. We use this approach to consider in detail sterically stabi-
lized phases of semiflexible polymers in two-dimensiof2)) smectic systems. For these 2D systems, we
obtain the universal constants characterizing the entropic repulsion between semiflexible polymers, such as
those in the osmotic pressufe= a(kgT)*¥ kY3 (a— ay;,) ®® with o found here to be=0.432(here,a is the
smectic phase period, armq,;,, and « are the polymer cross-sectional diameter and bending rigidity constant,
respectively. We address, by numerical simulations and analytic arguments, finite stadksaiflexible
manifolds, and discuss in detail the practically interesting thermodynamic Nmite. We show that the
thermodynamic limit is quickly approached within the constant-pressure ensemble: Already from numerical
simulations involving just few semiflexible polymers under constant isotropic pressure, one can obtain the
infinite 2D smectic equation of state within a few percent accuracy. We use our results to discuss the compe-
tition of electrostatic and entropic effects in quasi-2D smectic phases of DNA-cationic-lipid complexes. We use
our quantitative results to discuss in detail the elasticity, topological defects, anomalous elasticity, and the
effects of externally applied tension in sterically stabilized 2D smectic phases of long semiflexible polymers.
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[. INTRODUCTION manifold with neighboring manifolds in the stack. The con-
finement of manifolds by their neighbors in the stack yields a
Over recent years, we have witnessed an increased expereduction of their entropyi.e., increase in free energygiv-

mental and theoretical interest in structural and thermodying rise to the entropic osmotic pressure in these sterically
namic properties of two-dimensionéD) smecticA phases stabilized smectics. For the case of fluid membranes, the is-
[1,2]. In part, it has been stimulated by the recent discoversues related to this effect have been investigated in a number
of such a phase of long DNA molecules intercalated betweenf theoretical and experimental studies on lamellar phases
lipid membranes in DNA-cationic-lipid complex¢3—-8|. In  [9,10,17,22 The interest in these entropic phenomena goes
these systems, long semiflexible DNA molecules themselvekeyond the lamellar phases. In particular, they play a signifi-
form stacks of one-dimensional smectic layers that are 2[@ant role in global theories of phase equilibria in fluid mem-
analogs of lamellar fluid membrane phases and other thredsrane systemg23|.
dimensional smectié phase$9—13]. Because of the promi- In realistic smectic materials, similar entropic effects may
nent effects of thermal fluctuations in these phases, smectid®e substantial also in the situations in which the interactions
and smecticlike phases continue to remain in the focus obetween semiflexible manifolds are not purely steric. Signifi-
theoretical and experimental statistical physics. At longcant smectic propertie@lastic constants, equation of state,
length scalescompared to the smectic-phase pergdther-  etc) typically result from a subtle interplay between entropic
mal fluctuations are responsible for the absence of true longffects and bare interactions between manifolds. In this pa-
range positional order of smectic laygds14,19, as well as  per, we pursue theonstant-pressure ensemtdeproach to
for the anomalous elastic behavior present in both twoaddress the statistical mechanics of smectic phases of flexible
dimensional and three-dimensional smecfi2zg16]. On the  manifolds, such as two-dimensional smectic phases of long
other hand, thermal fluctuations in smectics may have sigsemiflexible polymers and three-dimensional lamellar phases
nificant effects also omesoscopitength scales. Thus, fluc- of fluid membranes, with arbitrary form of the interactions
tuations completely dominate substantial experimental propbetween manifolds, see Sec. Il. This approach is used, in the
erties of sterically stabilized smectic phases of largeSec. lll, to consider in detail entropically stabilized 2D sys-
semiflexible manifolds, such as stacks of fluid membranesems of long semiflexible polymers with hard-core repulsion.
(lamellar phasesor semiflexible polymers interacting with Such systems are stabilized purely by steric entfdgy-20.
purely hard-core repulsion. In these lyotropic smectics, elasFor these 2D smectic stacks Mfsemiflexible polymers fluc-
tic constants and the smectic equation of state, which relatdsating in a plane, we calculate, in the thermodynamic limit
the isotropic osmotic pressuketo the smectic period, are  N—oo, the universal constants characterizing the strength of
all purely entropic in origif9-11,17—-22 These properties the entropic repulsion between semiflexible polymers.
are dominated by strong fluctuations of thermally rough We address, by numerical simulations and analytic argu-
manifolds forming smectic stacks, as pointed out, for the firsents, finite stacks dil semiflexible manifolds, and discuss
time, by Helfrich[17]. In these smectics, semiflexible mani- in detail the experimentally relevant but computationally ex-
folds are essentially free objects up to a mesoscopic lengthensive thermodynamic limikl— . We show that this ther-
scale equal to the lateral separation between collisions of modynamic limit is quickly approached within the constant-
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pressure ensemble: Already from the numerical simulations z
involving just few manifolds under constant isotropic pres-
sure, we obtain the infinite smectic equation of state within a
few percent accuracy, as documented in Sec. Il and further
discussed in the Sec. IVA. In Sec. IV A, we also discuss the
interesting problem of hairpin turn dislocations in sterically
stabilized 2D smectic phases of long semiflexible polymers
[8]. In Sec. IV B, we discuss entropic effects in the situations
in which the interactions between flexible manifolds are not
purely steric. In that section, we discuss the systems stabi-
lized by electrostatic repulsion of the form appropriate for
the quasi-2D smectics experimentally studied in DNA-
cationic-lipid complexeg$4]. Our findings support the sug-
gestion of the experimental studies that the electrostatic ef-
fects dominate over the entropic effects, at least in the FIG. 1. Stack oiN fluctuatingd-dimensional flexible manifolds
experimentally accessible range of interpolymer separationsich as semiflexible polymersd€1) and fluid membranesd(
in DNA-cationic-lipid complexeg4]. In Sec. IVC, we ad- =2) in a (d+1)-dimensional space. Hereh,(x), with n
dress entropically stabilized 2D smectic phases of polymers 1.2,3 ... N, signifies the local height of theth manifold above
under externally applied tensiofstacks of directed poly- the d-dimensional stack base area. The figure conceptualizes a
mers. We use these results to further highlight the rapid:smecti(: _fluctuating at a fixed osmotic pressl_i’rexerted both on
convergence to thdl— o limit in the constant-pressure en- lateral sides on the stack as well as on the first {) and last
semble approach advocated in this paper. Finally, in Se ?N.) mgnn‘old in the stack. The average value of tlhe smectllc-phase
IVD we discuss the anomalous elasticity in 2D smecticP€0d: I-€., the average separation between manifelds,defined
phases of long semiflexible polymers. by the equilibrium averaga=(hy(x) ~hy(x))/(N=1).

This paper is organized as follows: In Sec. Il, we intro-
duce the cqnstant—pressure ensemble description of the stacks Hon(hy, ... h) =+ pf ddx[hN(x)— hy(X)]
of semiflexible manifolds. In Sec. Ill, we apply our approach
to investigate, by Monte Carl@MC) simulations, the steri-
cally stabilized 2D smectics comprised of long semiflexible
polymers. In Sec. IV, we discuss in more detail various 2DHere, the first term is the product of tipgessure and the
and quasi-2D smectic systems. In the Appendix, we analytistack volumeerm, describing the coupling of the system to
cally discuss the approach to the thermodynamic lilit (' an externally appliegsotropicpressuré8]. Hgomin Eq.(2.2)

—) behavior essential for the discussion in Sec. lll. In thejs the compressional energy of the stack due to interactions
Appendix, we also discuss a subtle discretization schempetween the manifolds, typically of the form

used to efficiently achieve the continuum limit in our MC
simulations and some other details of these simulations.

+Hcomt Hpena- (2.2

N—1
Heom= 21 fddx V(hy41(X) —hp(X)). 2.3
II. THERMODYNAMICS OF STACKS OF FLEXIBLE "=
MANIFOLDS V(hps1(X) —h,(X)) in Eq. (2.3) is a microscopidbare in-

In this section, we introduce the constant-pressure er€raction potential between neighboring manifoldige g in
semble approach to discuss the thermodynamics of smectfcd- (2-2) is the bending energy of the stack due to the bend-
stacks of semiflexible manifolds. Figure 1 depicts a stack o9 élasticity of the manifolds, of the form
N fluctuating d-dimensional manifolds such as semiflexible N
polymers @=1) or fluid membranesd=2) fluctuating in Hpond= > f ddxf[Ahn(x)]Z. (2.4
(d+1)-dimensional space. In Fig. 1h,(x), with n n=1 2

= 1,2,3... N, signifies the local height of thath mani- ) ) ) .
fold above thed-dimensional stack base area. Figure 1 conHere,« is the bendindcurvature elastic constant of flexible

. _ 2 . . . .
ceptualizes a smectic stack fluctuating at a fixed osmotignanifolds, andA =(a/9x)*, is thed-dimensional Laplacian
pressureP exerted both on lateral sides of the stack as well21]- In thermodynamic equilibrium, the partition function,
as on the firstii=1) and the lastif=N) manifold in the ~90ing with the smectic Hamiltonian E¢.2),
stack. In this constant-pressure ensemble, various interesting

guantities are functions of the osmotic pressBreFor ex- z:f Dhy- - J Dhye Hsmlha - /keT (2.5
ample, the average smectic-phase pekads
_ is associated with the constant-pressure free energy density
hn(x) —h1(x) . : )
a(P)= N=1 (2.1  defined per unit area of each manifold as
Here,(- - -) is the equilibrium average done with respect to F(P)=— keT In(2), (2.6)
the microscopic smectic Hamiltonian, of the form (N=1)Ag
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with Ag=[d%, the stack base area. The average smectitherein replaced by a suitably defined effective interaction
period, Eq.(2.1), can be obtained by differentiating the free potential V¢¢¢(a). This potential is defined in the constant-
energy density in Eg(2.6), volume ensemble that is related to our constant-pressure en-
semble by the Legendre’s transform
hN<x>—h1(x>> _IF(P)

—¢(N —
a(P)=T§ )(P)—< N=T w27 F(P)=[Ver(@) + Paling) (2.14
The smectic equation of state can be found simply by invertThe variation ovea yields
ing the functionf{(P) defined in Eq.(2.7). In general,

f(M(P) can be found by solving the statistical problem in- p—
volving N d-dimensional manifolds interacting through the Ja
HamiltonianHg,({h,}), Eq. (2.2), see Sec. Ill.

In the absenceof thermal fluctuations T=0), the
smectic-phase periaglis obtained simply by minimizing the
second and the third term in E¢(R.2), which can be more
suggestively combined into a single term,

~ Veii(a) (2.15

as anticipated above. With a knovia(P), the form of the
effective potentiaM.¢;(a) can be obtained by inverting the
Legendre transform in Eq2.14), by using the variational
principle,

Veif(@) =[F(P) —Pa]exp) - (2.16

By extremizing here oveP, we finda=dF(P)/JP, in ac-
cord with Eq.(2.7) above. In generalat any temperatuje

N—1
Héom: nzl f ddX[V(h,H 1(X) - hn(x))

+P{hy.1(X) =hy(x)}]. (2.8)  the smectic compressibility constaBy,, is defined as
By minimizing Eq. (2.8) over a=h,;;—h,, we obtain aP(a) ga(P)\ 1
F(P)=[V(a)+Palning . Yielding the “zero-temperature” Bsm=—2a =- . (2.17

. : Jda JaP
(mean field equation of state,
aNV(a) where the last form is appropriate for the constant-pressure
pP=— 5 (T=0). (2.9 ensemble. From Eq$2.15), (2.7), and(2.17),
a
2 2 -1

Expanding the smectic Hamiltonian E¢(2.2) around this B :aL”(a)E_ J F(f)) ) (2.19
minimum,yields the discrete harmonic smectic elastic Hamil- s da® aP

tonian

He|: f ddX

2
+a§ Kem[ #hn(x)
n=1 2 x>

Notably, by comparing Eq$2.9) and(2.12) with Egs.(2.15
2 and(2.18), we see that the entropic effectf#€0) are incor-
porated by the use of the effectic potentiéli;(a). These
effects dominate the equation of state and elastic constants in
the sterically stabilized smectic phases discussed hereafter in
, (2.10 the following section.

hpr1(X)—hp(x)—a
a

N
BSm(
angl 2

where I1l. ENTROPICALLY STABILIZED SMECTIC PHASES

In this section, we first discuss the equation of state of the

51 (2.11  sterically stabilized manifolds, by using our constant-
a pressure ensemble. Next, we apply our approach to quantita-
tively investigate, by MC simulations, the sterically stabi-
lized 2D smectics comprised of long semiflexible molecules.

gP(a) V() For these two-dimensional system, we obtain here, in ther-
a = (T=0) (2.12 modynamic limitN— o, the universal constant characteriz-
ing the strength of the entropic repulsion between semiflex-
ible polymers. In sterically stabilized smectic phases, the
bare interaction potential between manifolds is purely hard
core,

Ksm=
is the smectic bending modulus and

sm Ja da?

is the bare smectic compressibility. Introducing smectic pho
non variables in Eq(2.10), via h,(x) =u,(x) +na, and tak-
ing the continuum limit,u,(x)=u(z,x), z=na, yields the
standard harmonic smectic elastic Hamiltonjas]

au\? Kgm(d%u\?
He,(u)zfdzf ddx E) +i"(—) .
(2.13 . . . .
Here,ani, is the thickness of the manifolds, see Fig(Ror

2 | ax®
For nonzero temperatureshe pressure is given by a re- example, for semiflexible polymers in 2D smecties,;, is
lation isomorphic to Eq(2.9), with the bare interactiok'(a) their cross-sectional diametetWe will first assume that

0, hn+1(x)_hn(x)>amin

V(hn+1(x)_hn(x)): 0 h +1(x)—h (X)<a in-

Bsm
2

051918-3



L. GAO AND L. GOLUBOVIC PHYSICAL REVIEW E 66, 051918 (2002

amin=0. (Nonzeroa,,;, is discussed later on in this sectipn. with
To proceed, we will use the fact that the stack model of Sec.

I, Egs. (2.2—(2.4), has ford<4 (as assumed hereaftea
finite continuum limit Ax—0O for its correlation functions
and the equation of state, see the Appendix. Xkeordinate
can be thus treated as continuous, and the model can be t
freely rescaled as

x=Z, X', hy(x)=2Z, h;(x'), (3.2
with arbitrary rescaling constan®, and Z,,. An important
special feature of the hard-core potential in E1) is that it
is invariant under the rescaling foa.,;,;=0. Thus, the res-
caling maps the model in Eq&.2)—(2.4) into an isomorphic
model with the parameters

P'=2%z,P, k'=2%"%Z2, (3.3

whereas, from Eq$2.1) and(3.2), for the average period we

RVERPE—
)

P K

Pk ) [hy(0=hyx)
kgT"kgT

N—1
hy(x’)—hz(x")
N—1

!

K

(3.9

The last line of Eq(3.4) motivates to fix the rescaling con-
stantsZ, andZ, by the condition

P_« =1 3
kel T © 39
yielding, from Eq.(3.3),
(kBT)l/(4+d)Kl/(4+d) (kBT)4/(4+d)
X~ p2/(4+d) ¢ ChT diard)p(a-d)i(atd)’
(3.6
and, from Eq.(3.4),
a( P) :BN(d)(kBT)4/(4+d)/Kd/(4+d) P(A_d)/(4+d).
Here,
Bn(d)=a(1,1) 3.7

is a universaN-dependent constant. From E&.7), Bn(d)

is simply the average period of the stack model in Egs.

(2.2—-(2.4 with all the parameters therein set to be B (
—1, kgT—1, andk—1, as used in our simulations dis-
cussed later on Thus, the smectic equation of state has th
form

( kBT)4/(47 d)

P(a)=ay(d) @A) g4+ d)/(@—d)’

(3.9

an(d) = (By(d) D@D, (3.9
We would like to stress that, with appropriate values of
hﬁ§(d) and ay(d), Eg. (3.8) applies to stacks with aarbi-
trary numberN of flexible manifolds. Thus, for example, the
equation of state of the finite stack, E®.8), differs from
that of the infinite one only through the value of the
N-dependent prefactowy(d). By the aforementioned ex-
pression fora(P) and Eq.(2.7), the constant-pressure en-
semble free energy density has the form

4+d (kBT)4/(4+d)P2d/(4+d)
F(P)=Bn(d) g e

+F(P=0).
(3.10

Further, from Eqs(3.10 and(2.16), we obtain the effective
potential in the form

2d

( kBT)4/(47 d)
Kd/(47 d) a2d/(47 d)

Vet(@)=ay(d) +F(P=0).

(3.11

In Egs.(3.10 and(3.11), F(P=0) is the free manifold R
—0) free energy. It is just a cutoff dependent constant not
affecting the equation of stat8,, etc. It may be thus ig-
nored, as done in the following. From Ed8.8) and(2.17),

one easily finds the associated smectic compressibility

JP(a)
ga ON

4+d  (kgT)¥* 9
4—d ,dI(4-d)g(4+d)/(4—d) "

(3.12

In the above discussion, we set the thickness of the mani-
folds a,,;,=0. For a nonzer@,,;,, however, the problem
can be mappedxactlyto that witha,,;;=0, by making the
shift

sm— —a

hn(X)=hn(X)+ Napin- (3.13

From Egs.(3.13 and (3.1, it is easy to see that the new
variablesﬁn(x) interact through the hard-core potential with
amin=0. So, the problem for{h,(x)} with au;,#0 is
mapped into the problem fdh,(x)} with ay,;,=0. Conse-
quently, from Eq.3.13, we have, for the smectic-phase pe-

riod
> a #0

min

hn(X) —ha(x)

a(P):< N—1

FN<x>—E<x>>
S . +amin. 3.1
< N-1 Anin=0 ( 4)
e
Thus,

kaT 4/(4+d)

(kgT) (315

a(P)=pn(d) 1 0/(4+d) p(4—d)/(4+d) *+8min-
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TABLE 1. Universal constant®y(1) and ay(1)=[By(1)]>"® 08 ——r——F——7—— 17—
for 2D stacks ofN semiflexible polymers with hard-core repulsion, 0.7 [ ]
in the constant-pressure ensemble. The error bars are upper bounds 1 - N
to the actual errors induced by the ergodic averaging over a long but V) S R A E R CEEE L C R RS
finite MC time. We also include the values g, (1) and a..(1) 05 [ ]
obtained by fitting to Eq(3.17), see Fig. 2. [ Bp(1)=0.604  oew0
0.4} 0.650 i
BN(1) ' r 0.640
N IBN(l) aN(l) 0.3}F B 0630 .
2 0.6456+0.0009 0.4820.001 o2k 0.620 J
3 0.6399-0.0009 0.47%0.001 - 0610
01 L 0 2 4 6 8 10 12 14
4 0.634+-0.001 0.468 0.001 I N
5 0.631+0.001 0.464:0.001 0.00 2 "1 é é 1'0 1'2 T4
6 0.626+0.001 0.4580.002 z
7 0.626+0.001 0.4580.002
8 0.625-0.001 0.456-0.002 06—
9 0.621+0.002 0.452-0.002 F 1
10 0.619-0.002 0.456:0.002 05 b
® 0.604 0.432 A MBS g S T X
041 0.500 i
@0btained by the extrapolation formula in E.17). o (1) 0 [ 0o(1)=0.432 ;g0
e 0.480 T
. i L a (1)
From Eq.(3.15), the osmotic pressuie(a) and the effective ool Zzz ]
potentialVq¢¢(a) are given as in Eq$3.8) and(3.11), with a | 0450
therein replaced by —a,;,. This confirms the usually made L A S
i, : min-: . . 0.1 0 2 4 6 8 10 12 14
heuristic assumption that finite thickness effects can be in- A N
corporated by a naive replacementeody a—an,;, [24]. We 0.0 . s : . . .
stress however that, far,,;,+ 0, the smectic compressibility, o 2 4 6 8 10 12 14
Eq. (2.17), has the form N
y FIG. 2. Universal constanBy(1) and ay(1)=[Bn(1)]1>"° for
oP(a) 4+d (keT)TT a 2D stacks ofN semiflexible polymers. Dots are the MC simulation
sm=—a——=ay(d) B . results. Solid line is the fit to Eq3.17) with 3.(1)=0.604,Cy,
Ja 4-d (k)Y D(a—a,,) @ =0.216, andC = —0.191. In making this fit we discarded the

(3.19 point N=2. Dashed line is the fit to Eq(3.19 with B.(1)
=0.610 andC,;=0.465. In making this fit we also discarded the
From Eq.(3.16), we see that the replacement-a—an,,in POt N=2. We note that the fitting formulas in Eq&.17) and
Eq. (3.12 would yield anincorrect formula for the steric (3-19 are expected to work well for large enouh(see Sec. Ill
smectic compressibility constaBt . a_nd the_ Appendix StlII_, as seen in the magnlflca_tlon insets, all ten
As noted below Eq(3.7), to calculate the universal con- s[mulatlt_)r_ls are well fit by both formulas. The flgure_ documents_a
stantsBy(d) anday(d), it suffices to study the system with high efficiency of.th.e (;onstant-pressure ensemble in approaching
- . the thermodynamic limiN—o: Note that bothBy(1) anday(1)
8min=0 and the parametekg T, «, andP all set to be 1(in change only by about 5% &¢ changes between 4 and
the continuum limitAx—0): For this choice of the param-
eters, the average stack periadP) is exactly equal to
Bn(d). If Bn(d) is known, the corresponding value of Bu(1)=5 (1)+%+ @+% MJF o
an(d) can be directly obtained from E¢3.9). The average N * N N2 N2 N5/2 '
period a(P) of the stacks of manifolds can be directly ob- (3.17
tained by MC simulation of the constant-pressure ensemble
Hamiltonian; see Eq92.1)—(2.5. An essential part of the valid for largeN>1. By fitting the data from Table | to Eq.
MC simulation is achieving the continuum limkx—0. It  (3.17), one can estimatg8y(1) as well as the universal con-
has been accomplished by a careful discretization schemgtants in the expansion E(B.17). By using this procedure,
discussed in the Appendix. Hereafter, we focus on 2D stack#e estimateB..(1)=0.604, see Fig. 2. From E¢3.9), this
of long semiflexible polymersd=1). The simulation results corresponds to
for Bn(1) and ay(1) for the stacks withN=1,2,...,10
polymers are listed in Table I. The table also contains the @(1)=[B.(1)]**=0.432, (3.18
values off3,.(1) anda.(1) for an infinite number of poly-
mersN—«. These two thermodynamic limit constants arewith a=1% error(upper boungl corresponding to the typi-
obtained from the analytical treatment of the system pre€al accuracy of the various data in Table I, set, as usual, by
sented in the Appendix. As discussed therein, one has thgerforming the ergodic average over a long but finite MC
asymptotic expansion time.
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In the Appendix, we also discuss an approximative closedrane phases, in the absence of long range repulsion, inter-
formula for By(1), of theform actions between long molecules are dominated by entropic
effects. They yield an effective long range potential of the
Bn(L)=Bo(D)+Cq[W(D)=V(D]. (319  form as in Eq.(3.12 with d=1 anda therein replaced by
a—ap,- In the experimentally interesting thermodynamic

Here, C, is a universal constant, whereas limit N—2, the prefactor (4 d)ay(d)/2d in Eq. (3.12 re-
N-1 -\ 124 duces to
IWD=5"1 & kcos('“ﬁ” - (320 A.=2a.(1)=0.648, (4.1)

For N—oo, Wy(1)—W¥.(1)=0.9071, as discussed in the 4ccording to our simulationgsee Eq.(3.18]. In these sys-
Appendix. As detailed in the Appendix, E@3.19 is ob-  temg 4 . is the cross-sectional diameter of polymers repre-
tained by a reasonable but somewhat uncontrolled approxisenting the smallest possible value of the smectic-phase pe-
mation to 'BN(l)'ft'"' o data~cou|d be well fit to EQ. iod a. a,,, is typically much smaller than semiflexible
(3.19, with B..(1)=0.610 andC,=0.465, as documented in olymer persistence length,=2«/kgT (e.g., for DNA mol-
Fig. 2. _ _ _ecules,ayi,=2 nm, whereas;,=50 nm[3-5]). Here, we
Let us summarize our MC results on sterically stabilized,,gnt to emphasize that E6.11), with the universal prefac-
2D s'mectic.phase_f, of long semiflexible_mplecules. In thgg, A, =3a.(1)/2=0.648, is strictly appropriate only for
practically interesting thermodynamic [imiN—, the  he thermodynamic limit in which the number of polymers
smectic equat|on~of state has the form as in 8919 with N _ c (hulk behavio). It is however instructive to recall that
d=1 and B.(1)=0.604. Equivalently, the stack osmotic tor N=2 polymers, we find, within the constant-pressure
pressureP is as in Eq(3.8) Wlthsgjl’ a therein re.placed by ensembleA,=3a,(1)/2=0.723 (see Table )L This is only
a—amin, anda.(1)=[p.(1)]>*=0.432, according to our 1094 |arger than the thermodynamic limit valde. in Eq.
MC simulations. Finally, we emphasize the high efficiency of 4.1). For comparison, for a singld\(=1) polymer between
the constant-pressure ensemble in aproaching the thermodys o hard walls at the distanee one has the free energy as in
namic limit N—o behavior. Note that, for example, both Eq. (3.1) with the prefactorA~1.1036, as found by

Bn(1) anday(1) change by about only 5% a6 changes gy rkhardt(by an exact transfer matrix calculatif®0]). This
between 4 ancr, see Table | and Fig. 2. Thus, already from js 4jmost two times bigger than tHé=c thermodynamic
the numerical simulations involving a few flexible mani- limit value A.. in Eq. (4.1) obtained by using our constant-
folds, one can obtain the infinite smectic equation of Stat‘;f)ressure ensemble. Notably, althoughmust have the same
within a few percent accuracy. In the following sectidsee  \51ye in any ensemble, our constant pressure ensemble pro-
Secs. IVAand IV @, we discuss the physical reason beyond, ;jes significantly faster convergence to the thermodynamic
this favorable feature of the constant-pressure ensemble, affhit N— o behavior than the ensemble Kfmanifolds be-
compare it to related earlier studies of smectic stacks. tween hard walls. Apparently, from our Table I, we see that
the thermodynamic limit result is reached, within a few per-
IV. DISCUSSIONS cent accuracy, already by using simulations involving small

In the light of the results of previous sections, in this Iitagks t?f Just fﬁwtpo:(ymgtr; qu;:_tuatmg atthconsta:nt ptrﬁss}ure
section we first continue our discussions of entropically - uch a small stack, with’ acting over the arc fength o

(sterically stabilized 2D smectics. We address in more detailtﬂe Iaﬁt and firgt pol)llme[rsee ES.(Z.Z) ani Fig: ]f] can be
their elasticity and the structural properties of topologicaltougnt(@pproximately as a subsystem of an infinite smec-

defects (hairpin turn dislocationsin these phases in Sec. tic stac_k. Within t_h's. z_approxmgnon,_the pressmemodels_
IVA. Next, in Sec. IV B, we will discuss entropic effects in the action of the infinite .smectlc on its small susystem, ie.,
the situations in which the interactions between erxibIethe small stack. T'he quick c.onvergenceNeeoo behavior .
manifolds are not purely steric, by focusing on the system e!l documents this assumption. Ir! fact, the_ thermgdynamlc
stabilized by electrostatic repulsion forces of the form appro-Imlt results are reasqnaply approximatguithin a 10./0 ac-
priate for the quasi-2D smectics experimentally studied incuracy already by using jusk=2 polymer;; quctugtmg un-
DNA-cationic-lipid complexeg$4]. In Sec. IV C, we discuss der the pressure. Ap_parently, this manlfold?p:?ur_ system
entropically stabilized 2D smectic phases of semiflexible’V€!l @Pproximates a bilayer subsystem of an infinite smectic
polymers under externally applied tensi@backs of directed ;tack, V‘."th the pres.surlé (ac_tmg on the pa)rm|m|pk|ng t_he
polymers. In Sec. IV D, we discuss the anomalous elasticity'meraCt'o_n Qf t_he bilayer with nelghbor|ng manifolds n the
phenomena in 2D smectic phases of long semiflexible po|y_stack. This is in contrast to th_e previous reIatgd studies that
mers. have been based on considering a stack afianifolds con-
fined between two hard wall0,22. The two hard walls
may be thought of as immobilafinitely rigid manifolds.
Obviously, such a system doest directly resemble a sub-

2D smectics with purely hard-core repulsion interactionsystem of an infinite smectic. On the other side, in our
between neighboring polymers are 2D analogs of extensivelgonstant-pressure ensemble, instead of the hard walls, we
studied 3D lamellar phases of membranes repelling eachave, at the bottom and at the top, the two manifolds having

other with a short range repulsi¢h7,9-11. Like the mem-  the samebending rigidity as any other manifold in the stack.

A. Sterically stabilized two-dimensional smectics
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As depicted in Fig. 1, the shapes of these boundary mani-

5 3
folds are thus free to fluctuate under the influence of nearby Req=3 (£x/2)"(a—apin)*?
manifolds and the externally applied press@eThis pres- 10A.,
sure applied to boundary manifolds approximately models =1.98(§p/2)2’3(a —ag)te (4.6)

the action of the manifolds that would be present, in an in-
finite smectic stack, above and below the stack in Fig. 1. Du%ikewise, for the hairpin dislocation energy-temperature ra-

to these physical reasons, our constant-pressure ensemlalg’ we find
provides a faster convergence to the thermodynamic limit
behavior, compared to the studies employing hard walls as Enp 5\ 45 &/2 3/5
boundariegsee also Sec. IV C and RéR8] for further dis- mzcﬁﬁ( §> (V10 A../3)%9 Po—
cussion. B min
Various bulk properties of the sterically stabilized 2D £pl2 3/5
smectics are sensitive to the actual valué\gfgiven by Eq. =16 a—a 4.7)
|

(4.1). Thus, the smectic compressibility constant is given

here by Eq.(3.16 for d=1 [then the prefactor therein re- \ve remark that the results in Eqg.4)—(4.7) are applicable
duces to %r.(1)/3=10A../9=0.720] We note that, whereas i the range of smectic periodsfor which Eq.(4.4) yields
the osmotic pressure and the smectic compressibiliBsy, Deq>a. From Eq.(4.4), we find

are both sensitive to the value Af,, their ratio is not,

3/5
~ea_ 4/5(5) w3 ) fp_/2 B _ Bmin *
Q:i:% 1— Amin ] (4.2) a 3 V10A, a a
Bsm 5 a
g /2 2/5 @min 3/5
, _ , , _ :1.42("—> 1- , (4.8
Still, most of the interesting materials properties here depend a a

on the actual value ok, . For example, the smectic penetra-

tion lengthh = (K¢/Bsm) Y2 is, from Egs.(3.16 and(2.1),  Valid in the range ofa in which D¢q/a>1 [8]. From Eq.
(4.9), the D¢4/a ratio reaches its maximum value

ain| 43 2 3/5 2
= (Ep/Z) 2135113 1 _ %) (%) _ C4/5( i) 5 3 fp 5
10A, a/ . 25/ \J10 A, \@min
amin 4/3 P
=1.19£,/2)%a 1- — 4.3 5
P a _o5d e |® (4.9
Amin

Many other significant structural propertie; of the_se phasea,hen the smectic period reaches the characteristic value
also depend on the actual value Af . An interesting ex- s Bv Eq. (4.9 thi . . trolled b
ample for this are the properties of hairpin turn dislocations®o = 2@min- By EG. (4.9), this maximum is controlled by

recently elucidated in Refi8]. These dislocations have a the ratio&p/anin, which is large for realistic semiflexible
large void in their cores, with the size along the smegtic POlymers. From Eqs4.8) and(4.9), the equilibrium size of

direction Dg>a, and the lateral size along the smectic hairpin turnsDe is generally larger than the smectic-phase
directionL ;=2 [8]. From the results of Sec. V of Re#], penoda. The ratloD_eq/a—>1 ,only in two cr/laractenstlclllm-
and our Eq(4.1), we find its: for small periodsa<<ap;,, With (&mi;—amin)/anin
=0.56 (2nin/&p)?2. The other limit corresponds to a
highly swollen phase with the period given by a;ax

3/5
) (£/2)25(a— ) ¥ =(C?2)(5/3)V43/\V10A,)¥%,=1.80¢,, at the border

1/5
Deq= c4’5( §) ( . e ; o
JV10A, line for the phase transition to the isotropic liquid state of
polymers(in analogy to the 3D fluid membrane pha$23)).
=1.42£,/2) " (a—anin)*"®, (4.4 Close to this transition, from Eq4.7) with a~¢,, one has
Enp~kgT, and the dislocations ensemble becomes dense, in
5\ 35 4/5 accord with the onset of a nearby isotropic liquid phase. It
=C25 — N 2)8/15 59 _g . )7/15 should be stressed though that applying results such as Egs.
Lea=C (3) (\/ m) (&/2) 12~ ami) (4.4—(4.9 to a situation witha~ &, yields only sound quali-
tative conclusions: The basic form of the entropic repulsion
= 1-67(§p/2)8/15(a—amin)7/15' (4.9 (3.11) is exact only in the limia< &, . As the phase period
approaches the polymer persistence lerggthcrumpling ef-
with C~1.198[8] andA.. as in our Eq(4.1). Another prop- fects that soften the bending rigidity of semiflexible poly-
erty of these dislocation cores is the radius of the void intermers come into plaj11,21]. These effects are ignored here,
face curvature(induced by the osmotic pressuirB, [8]. by using the harmonic model for bending elastidige Sec.
From the results of Ref8] and our Eq.(4.1), II). Whereas an investigation of these effects is beyond our
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scope hered<¢,), we note that detailed discussions of the (4.3)]. The above bare properties would approximate the ac-
crumpling effects in fluid membrane phases are presented itwal (renormalized smectic properties only for the situations
Refs.[11,23. in which the entropic effects due to lodahesoscopicpoly-
mer fluctuations could be ignored. It has been suggested that
B. DNA-cationic-lipid complexes this was the case, at least in the previously studied systems

. . ... |4]. However, a more quantitative support for this suggestion
A number of recent experimental studies of sem|erX|bIe[ | d PP 99

. . - “was missing, such as the actual value of the steric couplin
polymers phases have addessed the quasrtwo—dmensmr&? g ping

) ) . nstantA.,.=3a.,/2, Eq. (4.1), calculated in the present
smectic phases of DNA molucules with perias &, [3-5]. “ g (4.1 ’

. ; | work. To discuss the competition of steric and electrostatic
Notably, however, in these systems, the interactions betWeelacts we note that at short enough inter-DNA separations
the semiflexible polymers are definitaipt purely hard core

5. Th | f NA Mol a, the steric effect must dominate: Note that, for example, the
(sterig. These systems are complexes of IOPNA mol-  giaric pressur@sY(a) [see Eq(3.8) with a therein replaced
ecules mixed with cationic-lipid molecules for the purpose of

) by a—a,,;,] diverges asa—a,;,, whereas the electrostatic
modern gene therapy techniqués. These complexes have pressureP(®9 in Eq. (4.10 remains finite fora=a;,.

::Jheen tthe Isutbjgpts 0f8a gumberﬂof :ﬁcent exlperlm?ntal anglearly, the steric pressure will dominate in a range of small
eoretical studieg3-8§|. Frequently, the complexes form a a, for a<a, , with a, signifying a crossover length scale

3D lamellar membrane phase wilhDNA molecules inter- between the steric and electrostatic regingscan be esti-

Salateg itn gallegﬁlsAbetvlveer; lipid gjgmbretuﬁasﬁ]. Interac- -~ ated simply, from the conditioR(%(a, ) = P¢9(a, ). By
ions between molecules in different galleries are ex- i pore Eqs(3.8) (with d—1 and a replaced bya

perlmeptally evidenced to 'be weak. To a gpqd_amm) and (4.10, one finds that
approximation, one can consider these so-called sliding
phased6,7] as stacks of weakly interacting 2D smectics in
which DNA molecules play the role of smectic layers. These
quasi 2D smectic phases are stabilized by complex repulsive &min
interactions of electrostatic origir8,4]. Their detailed form ith
is not well known. To discuss the interplay between the enV!
tropic and electrostatic effects in these phases, we consider

ay

—1+z,, (4.13

1 | 3/5 3/5
the following semiempirical form for théelectrostati¢ os- 7. = (1) B ( _ Bes <1.
motic pressure between DNA molecules: * Ce aZl(£,/2)? min
T (4.19
(e9(gq)=C.— 2 ~ _
P™(a) C6|B(a_aes)' Ce~7.206, (4.10 We thus find, foré,=50 nm, thatz, ~0.05. Thus, the cross-

over length scal@, is only some 5% larger than the DNA
suggested by Salditt al., Ref.[4]. Here,l is the so-called diametera,,;,. At thus small inter-DNA distances, the he-
Bjerrum length; 15~0.7 nm in water at room temperature. lixes of neighboring DNA would couple. Such a locking may
aes in Eq. (4.10 is an electrostatic diameter of DNA,,  tranform the 2D smectic into a 2D solid. Overall, these esti-
~0.4 nm at most, that is, one-fifth of the actual diameter ofmates support the conjecture of the experimental studies on
DNA (or even smallef4]), which is a,j;~=2 nm. The os- DNA-cationic-lipid complexeq4], that electrostatic effects
motic pressuré”(®¥ in Eq. (4.10 would correspond to the dominate over the entropic effects in the investigated range

bare interpolymer potential of the form of smectic-phase periods It should be noted though that
steric effects may become dominai$o at large interpoly-

(€9 oy kT mer separationg, at which the osmotic pressure law in Eq.

ViFi(a)= _Ceﬁln(a_aes)- (41D (410, and the corresponding logarithmic form of the

polymer-polymer repulsion Eq4.11), breaks down and be-

In the absence of polymer shape fluctuations, from Eqscomes replaced by a faster decay law with increasinigor
(4.10 and (2.9, the smectic compressibility modulus is bare osmotic pressureB(a)~1/a” decaying faster than the

given here by steric osmotic pressure in E.9) [i.e., y>5/3 for d=1],

the largea behavior must be dominated by the steric pressure

ksTa PSY(a)~1/a%® Whereas such a steric regime has not been

Bsm=Ce——. (4.12  reached in the previous studies in DNA-lipid complexes, its

lg(@—aes) plausible existence appears to be an interesting subject for

future experimental investigations of these and other related

The quantityQ) in Eq. (4.2 here assumes the simple form, systems.

Q=P/Bsy=1—a.s/a. As a>a,~5ae, O is =1

in practical situations. The smectic penetration length ) o ) )

here is )\(a):(Ksm/Bsn1)1/2:)\o(1_aes/a)n with A, C. Stacks ofN nonintersecting lines with tension
=Véplg/2C,. As a>api~5a.s, to a good approximation In this section, we compare the 2D stacks\b§emiflex-
M(@)=\, andQ~1. Notably,\ here does not significantly ible tensionless polymers with bending rigidiky with the
depend on the phase peria] in marked contrast to the sterically stabilized stacks dfl nonintersecting lines with
penetration depth in entropically stabilized phaks=e Eq. tension. As discussed here, in the constant-pressure en-
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semble, the problem with tension is exactly solvable Nor o[dhi(x)\? «/[d?hy(x))?2

=2 andN=. This provides a useful reference point for a Hsm(hlth):J dX[E( ax ) E( e )

better insight into the constant-pressure ensemble advocated

in this paper. Besides, the stacks of lines with tensiaiir o [dhy(x)\? K [d?hy(x)\?

rected polymers) are interesting in their own right. In par- + E(T) + E(T) +Vhe(ha(x)

ticular, they represent the actual model for semiflexible poly-
mer phases under external tensional force that is applied to

polymers. For large enough polymer separatianshe en- —h () + P[hZ(X)_hl(X)]]' (4.19
tropic repulsion between the polymers is dominated by ten-

sional effects rather than by bending rigidity. In 2D smecticcorresponding to the smectic stack Hamiltonian, EB<®)—
system, the presence of the tensioradds the term (2.4), for N=2 ando=0. To proceed, we introduce new
variables defined by

dh (x))2

N
g
Htens:nz1 fdxi( (;X

to the smectic stack Hamiltonian in E@®.2). In the absence
of tension, foro=0, we have the osmotic pressure law as in
Eq. (3.8 with d=1 [for simplicity, we will seta,,;;=0 in
this section, with the universal constanigy(1) calculated

in Sec. lll (Table ). In particular, for the stacks withl=2 =

and N= polymers, we founda,(1)=0.482 anda..(1) Hanl(h1.n2) =Hre(N+Hom(R). 423
=0.432 in the constant-pressure ensemble. In the presencewfth the relative Hamiltonian

tensiono# 0, the long scale thermal fluctuations of flexible

polymers are weakened, and, at large encajghe pressure H _f q a dr(x)\? «/[d?r(x)\?

law as in Eq.(3.9) is replaced by a faster decaying pressure rei(1) = X 4\ dx dx?

law, of the form

(4.15
(0=hy(0—hs00, Rog =" 4 0

the “relative coordinate” and “center of mass coordinate,”
respectively. In terms of these coordinaték,,(hy,h,) in
Eq. (4.19 seperates into a sum of two Hamiltonians,

4

2 +Vp(r(x))+ PI’(X)] (4.22
(0) (kBT)
Psi(@)=ay’(1) gad - (4.16
and the harmonic center-of-mass Hamiltonian
Equation(4.16), with the universal constani{’(1), can be dR(x)\2  [d?R(x))\2
established by reasonings similar to those of Sec. IlI, here Hc.m.(R):j dx U( ax ) K( e ) . (4.23

applied to the stack of directed polymers with=0 and o
#0. Fork#0 ando#0, there is a crossover length scale which is trivially solvable. However, to find the equation of
state, one needs to solve a nontrivial statistical mechanics

(kgT)%k problem associated with the relative Hamiltonian E522),
™ T 3 (417 {0 find the average
a=(hy(x) —hy(x))=(r(x)) (4.24

such that fora<a,, the bending elasticity dominates and

Eq. (3.8 applies(with d=1), whereas for>a,, the tension s the function of the pressule To study the tension domi-
o dominates and Ed4.16) applies ford=1. Universal con-  pated regime[Eq. (4.16)], it suffices to setx=0 in Eq.
stants of the tension dominated steric pressure are actualjy 22). Such a problem can be analytically handled by the
exactly known in the ensemble bfnonintersecting directed  standard transfer matrix meth26], as discussed before by
polymers(with x=0 ando#0) confined between two hard Netz[8], by mapping it into a one-dimensional quantum me-

walls that can be mapped into the 1D gad\dfree fermions  chanics probleni27]. For the constant-pressure free energy,
confined between the two hard wal5,22. By using this  Netz finds

mappingand the equivalence between the ensembles, which

appliesonly in the thermodynamic limiN—oc, we have (kgT)?® p23
Fn=2(P)=Chx 13 +Fn=2(0), (429
2
@(1y= T —
a.”(1) 3 3.290, (4.18 with C,;=2.337 being thdirst zero of the Airy function.

From Egs.(4.25 and(2.7),
for both ensembles.
On the other side, the constant-pressure ensemble with
N=2 polymers is also exactly solvable far=0 and o
#0. To see this, let us consider its constant-pressure Hamil-
tonian with, for N=2,

(keT)??
_ plo)
a=py"(1) s13p13’ (4.26
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BY)(1)=2C=1.558. (4.27)  the same as oup..(1) for two-dimensional semiflexible
polymer stacks, see Sec. Ill. Thus

From Eq.(4.26), one recovers the pressure law in E4.1
with .28 P €416 Bo(2)=PB(1)=2. (4.30

Note however that, from Eq3.9), the corresponding values
(o) —r1 plo) 3
an (D) =[BN (DT, (4.28 of a.(d) are substantially different fod=1 andd=2. It
B would be interesting to understand the reasons beyond the
and thus, foN=2, from Eq.(4.27), (approximativeé superuniversality reasons gBy(d) sug-
gested by Eq(4.31).
a$"(1)=(2Cp)%=3.783. (4.29

. . . D. Anomalous elasticity
From Eq.(4.16, Eq. (4.26 applies to anyN, with the uni- )
versal constantsf\,")(l) andaﬁ’)(l) related as in Eq4.29. 2D and 3D smecticé are known to have an anomalous
In particular, in the thermodynamic limki— » elastic behavior at long length scalgs16]. It qualititavely
’ ’ alters the character of smectic fluctuation at scales longer

5 1 than certain Ginzburg length scalégy and &g, with, for

3 .
B(1)=[al?(1)]3= (7; ) =1.487, (4.30 2D smecticq 2],
(Ksm ¥ (écx)’
B B : SGX: 8 ) gGZ: ) (432
using the exact result in E4.18). By comparing Eq(4.30), KgTBgsm N

for N—oo, with Eq. (4.27), for N=2, we see that, for a . o
given pressurd®, the average interpolymer seperatiarin A= VKsm/Bsm. For 2D smectic phases of long semiflexible
Eq. (4.26) is decreased by less than 5% by going from themolecules with bending rigidityx=kgT¢/2, from Egs.
bilayer system K=2) to the bulk systemN=c0) fluctuat-  (2.1D and(4.32,

ing under the constant presswPeThis illustrates high effi- 2

ciency of the constant-pressure ensemble in studying the §Gx:477é7\, Egr= 16#2(&) AL (4.33
thermodynamic limitN— oo behavior. Similar efficiency has a a

been documented before, in Sec. lll, for 2D smectics Withou}: . . .
externally applied tensiofsee Fig. 2 and Table.IThus, this or the gleptrQSFatlcaIIy stabilized quasl-2mectics in the
favorable feature appears to be generic to the constanP—’\l'A"C‘G‘t'on'C'“p'd complex(s_ee.Sec. IV r~1.6 nm and
pressure ensemble advocated in this paper. The physical ri(ésl%SO nm, whereas the periadis 3-5 nm. Thus, from Eq.
son for this has been anticipated before, at the beginning 14.33),_the anomalo_us length scales are Iarg_e compared to the
Sec. IV A. The stacks o manifolds fluctuating under fixed SMectic-phase periodégz~ 10%a), making it hard to ob-
isotropic pressur® highly resemble subsystems of an infi- S€fvé the anomalous effects in the available phase mon-
nite smectic, with the pressuReapproximately modeling the odomalns_lln these system. On the cher side, for. th(_a steri-
action of the infinite system on the small subsysterNof Cally stabilized phasegSec. IVA), with our quantitative
smectic layers. In general, such a subsystem can be exacfi§Sult fork in Eq. (4.3), we find, from Eq.(4.33),

described by areffectivesubsystem Hamiltonian that may

5/3 4/3

be, in principle, found by integrating out of the infinite smec- @ _ 4_77 3 é _ 8min
tic partition function the layers not belonging to the small a 223 J10a.\a a
subsystem ofN smectic layers, as we detail elsewhg28].
. . . : . 5/3 4/3
Here we note that this effective small stack Hamiltonian is —9 3g(§) 1— Amin 4.34
well approximated by the constant-pressure Hamiltonian of “la a '
Sec. I, as evidenced by the fast convergence to the thermo-
dynamic limit behavior documented here for semiflexibleand
polymers smecticgwith tensior) and in Sec. Il (without
tension. This feature of the constant-pressure ensemble is §6z 16m? 3 [£)\®? _ Anin 4/
documented also by the studies of the sterically stabilized a ﬁ J10A, a a
stacks of tensionless membranes=(2). Thus, from Netz's
simulations of N=2 membranes under constant pressure o\ &3 apin|¥?
(Sec. 1), By(2)=[ax(2)]3=0.614, see Ref(8]. This is =117.97 ) (1-— (4.35

only few percent bigger than the estimate for the thermody-

namic limit N=o, B.(2)=[a.(2)]**=0.596, obtained The ratios in Eqs(4.34 and(4.35 have an interesting de-
from the simulations of Gompper and Kroll of membrane pendence o They both reach amaximumat characteristic
stacks confined between two hard wéRg]. [By the equiva-  values of the smectic period; (£ex/a)max~ (£p/amin)>">
lence of ensembles in the thermodynamie=co limit, the  for a=9a,/5, whereas gGZ/a)maX~(§p/amin)8’3 for a
same value of..(2) would be obtained in the constant- =3a.,;,/2. Away from these maxima, the ratios in Egs.
pressure ensembldt is interesting to note that thig..(2) (4.34) and(4.35 drop down. Thus, both ratios approach the
for three-dimensional membrane stacks is, curiously, nearlyaluesO(10?) for a~ &y, i.e., close to the transition to the
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isotropic liquid phase. In this limit, however, the dislocation N-1 “ by

ensemble becomes dengee Sec. IV A, and Ref8]), and H.om= f dix >, k—|[hn+1(x)—hn(x)—ro]",
the nematic charater of 2D smecticlike systef$ would n=1 k=2 %

preclude the existence of the length scale range with the

anomalous elastic behavior. On the other side, the ratios in.th RYI( introducing h th fic oh
Egs.(4.34 and(4.35 can be both made small in the limit of itr blk .dgrO)' _n ro+ucmg e;e ethsme(_: Ic FI) ?nokn
small smectic periods. Note that, interestingly, both ratios;f'a”a.ltes.’ Vi 2n2(x2—nr0 Un(x), reduces the original stac
actuallyvanishfor a— apn,;,. This phenomenon is caused by amiltonian(2.2) to
the diverging behavior oBg,(a) for a—a,, see Eg.

(A1)

=Hg+
(3.16. From Eq.(4.35), for example, the rati¢s,/a—1 for Hsm=Ho*Hann (A2)
a—(1+o)ami,, with with
/
o 223 \/10A., o Amin 2:00253(@ 2 g % K )
1672 3 & : & Ho—f d"x n:1§[Au”(X)]
(4.36

N—1
b,

for the realistic semiflexible molecules, witly,,<¢,. For +nzl ?[un-%—l(x)_un(x)]z : (A3)
the DNA molecules, for example, witf,~50ay,, from

Eq. (4.36, 0~10 °. That is, £5z/a—1 only for a very  he harmonic part of the smectic Hamiltonian, and
small separation between DNA helixes. Again, as noted in
the discussion below E@4.14), such separations are almost N-1 “ b

. . s . K

certainly maccessable_ vv_|th|n the range of the smectic phase Hann= 2 dde k_,[Un+1(X)_Un(X)]k- (A4)
of DNA molecules. Within the smectic range, one must re- n=1 k=3 B
quire thata—ap,;, is some 10% or so larger thay,;,, to ) o
avoid crystalization into a 2D solid of locked DNA helixes. the anharmonic part of the Hamiltonian. For the average
Still, even witha~1.1a,,;,, the ratios in Eqs(4.34 and Smectic period Eq(2.1), we have
(4.39 would remain large foré,/a~¢,/ani,=25, as for he—h _
DNA. Overall, an experimental observation of the anoma- aN:< N 1> =1, <UN U1>_ (A5)
lous elasticity effects may be hard to achieve in both steri-
cally and, as noted before, electrostatically stabilized phases
of long semiflexible molecules, such as DNA. The aboveln the absence of the anharmonic terms, @d}), the second
large estimates foég,/a, for example, show that one must term in Eq.(A5) vanishes. Thus, within the harmonic ap-
have at disposal large monodomains of aligned DNA mol{roximation,a=r, i.e., a is N independent. Thé\ depen-
ecules, which may be hard to realize in the experimentslence ofa is thus an effect of the anharmonic terms in Eq.
[3-5]. (A4). They can be handled systematically, first by carefully
diagonalizing the harmonic smectic Hamiltonain E43),
and then using the standard perturbation theory, the loop ex-
pansion[29]. For d<4, this perturbation theory, to all or-
ders, has a finite continuum limit,~1/Ax—; see, e.g.,

g. (A6) below (see also the discussion in R¢R6]). We
ssume this limit in Eqs(A7)—(A12) hereafter. Thus, for
example, by keeping in EqA4) only the cubic term K
'=3), we find, to one loop ordegf‘tadpole” diagram
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APPENDIX aNTIo™ N1 2p, ) 2mON
In this appendix, we will first analytically discuss the ap- -
proach to the thermodynamic limit behavitt;—oo. We de- N—1 2 1—cos( mN”
rive here the formulas used in Sec. Ill to extract this behavior x> , (AB)

from the simulations done with a finite numhérof flexible ™

polymers (see the end of Sec. JIl We will discuss theN 1-co mﬁ

dependence of the average smectic-phase period ZEL).

For this purpose, we consider here interpolymer potentialfor the stack ofN d-dimensional manifolds. Integrating Eq.
V(r) (r=hp;1—hp) such thatV,.(r)=V(r)+Pr has an (A6) overq yields, ford<4,

analytic minimum at =r,, see Eq.(2.8) [we discuss, later

- Kq4+ 2b2

on, the situations with/,¢(r) having a nonanalytic mini- an=Tro+ AP n(d). (A7)
mum)|. ExpandingV ¢ in powers ofr —r yields, from Eq.
(2.9), Here, A4 is anN-independent quantityA;~ —bs), whereas

051918-11



L. GAO AND L. GOLUBOVIC PHYSICAL REVIEW E 66, 051918 (2002

values ofN, the expansiofA12) should be applicable also to
the sterically stabilized 2D stack of semiflexible polymers, as
documented in Sec. Ill, see Fig. 2.

We now turn to the discussion of the discretization
scheme used in our Monte Carlo simulation by focusing on
the most subtle part related to the semiflexible polymer bend-
ing energy. In the continuum model, it has the familiar form

T d
‘I’m(d)zf —Q[l—COSQ)]dM- (A9) )
o H Kf dxh )( J
bendzi xn(x W

dia this expansion must be universal. Overall, for large enough
1- cos( mﬁ> } (A8)

1 N—-1
V()= =g mE:l

is a dimensionless quantity responsible for thdependence
of the average smectic period in E&\7). It has a finite limit
for N—oo,

2 d ~
h(x)=5 | 5o
(A13)

Equation(A7) can be then, more suggestively, rewritten as

an=ax+AgWn(d)—V(d)], (A10)  for each of the polymers in the stack. The straightforward
discretization proceduréwhich is actuallynot used in the
calculations presented in this pap&r to replace Eq(A13)
with

making it manifest thaty—a.. asN—oo. For example, for
2D stacks of semiflexible polymersd€l1), W.(1)
=2Y9B(1/2,3/4)/r=0.9071, whereas, from Eq.(A8),
V,(d)=1 (for any d). These numbers exemplify the fact , K

that, for Ay~ —bs>0, the average smectic periag in Eq. Hgfﬁfz(A—X)gz hi(A))%hy. (A14)
(A10) decreases with increasing, [30]. This is in accord K
with the data in Table I, by recalling that the constgg{(1)
therein is identical taay for P=xk=kgT=1 (see Sec. I
Thus, from Eq.(A10),

Here, as usualh,=h(x)|.=kax and Ax is the size of the
polymer “unit cell” (physically, the monomer sizeA, in
Eq. (A14) stands for the ordinary lattice Laplaciai;h,

Bu(d)=B(d)+Col Wn(d)— ()] (ALL)  — Mera™ 2PNy, and, thus,

2K —
for the sterically stabilized phases. He@, is, like By(d), a (A0 M=o~ -1+ 8 A1+ P (A15)
universal constant. As documented in Sec.(8¢e Fig. 2,
for the casaed=1, Eq.(A1l) provides a good fit to our data This simple discretization scheme can be shown to produce
obtained with different values of N. In relation to Hé\11), an “error” in equilibrium averagesrelative to the continuum
few remarks are in order. model, Ax=0) that is proportional to £x)?. This can be
(i) Equation(A11) is valid, to one-loop order, only for the seen by calculating momentum integrals such as those in Eq.
model (A2) truncted to the cubic order. Even though Eq. (A6), with the g* therein replaced by its lattice version im-
(A11) provides a good fit to the data of Sec. (Hee Fig. 2  plied by Eq.(A14), yielding
it is only an approximation. The full model contains quartic,
guintic, etc. anharmonicitigsee Eq(A4)]. Also, in the full
treatment, one would need to do the loop expansion to all
orders(a difficult, if not impossible, task Still, an inspection
of the perturbation expansion shows that, der 1, with |g| < #/Ax, the momentum cutoff. The actual cause of
the (Ax)? error is not due to the presence of this cutoff.
Rather, the error of this magnitude emerges due to the fact
RER that the right hand side of EGA16) is not exactlyg*. By
(AL2) expanding it, one finds

2

2[1—-coqgAXx)] (A16)

A" (07)*= | —— 5,72

C C C C
— (1) (312) (2) (512)
An(1)=p(a)+ N N3/2 + N2 * N5/2

. _ . 212_ 444 6 24 ...

as can be inferredalso by asymptotically evaluating the (A7)"=0a"+ constq(Ax) ' (AL7)
sum in Eq.(A8) for d=1 andN>1. Note that, fod=1, the  gyentually triggering the4x)? error. Fortunately, it is pos-
expansion contains both integer and half-integer powers of;e to further diminish the error magnitude belowx)?.
IN. For this purpose, in our simulation, we replace thg)¢

(i) The reasoning leading to EGA7) assumes that one perator in Eq(A14) with the lattice operator defined by
deals withV,(r)=V(r) + Pr having an analytic minimum.

Apparently, this is not the case ¥f(r) is the hard-core po- (AD2—3%(A)3. (A18)
tential Vi (r), i.e., in the sterically stabilized phaséSec.

lIl). Nonetheless, it is to be generally expected thatahge ~ The marked feature of the new operator in E418) is that
N behavior in these system can be handled by a suitablé yields, in the momentum representatidd,— —qf =
coarse-grainedeffective potential having an analytic form —2[1— cos@xq)]/(Ax)?], the expansion

similar to that of the effective potential discussed in Sec. lll, .
see Egs(3.11) [31]. The above reasoning can be then ap- 2.2 23 4 6 8 a

plied to such a coarse-grained model, yielding again the ex- (@)™ g (A =a"+0X A = 5o A (Ax) T - -,
pansion in Eq(A12). Like By, the numerical constants in (A19)
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with a vanishing ¢ term. From Eq(A19), one may naively autocorrelation function of the instantaneous smectic periods
expect that the discretization error is now(Ax)4. This, must have its time range smaller thgp,,/10 cycles. The
however, turns out to be wrong, as can be checked by calcwutocorrelation time range corresponds to the longest time
lating the momentum integrals such as those in &®), scale in the system. It is, in fact, the lifetime of thlewest
with (g?)? therein replaced by q?)?+(q?)°%/6, [with g>  mode of the system. This time scale generally increases with
=2[1—cos@Ax)J/(AX)?, as noted above This calculation increasing number of manifoldsl, because smectics are
shows that the actual error is(Ax)® rather than Ax)*. massless systems, without intrinsic long space-time scales.
still, with the more sophisticated discretization scheme inAt this point, it is useful to recall that the Monte Carlo dy-
Eq. (A18), one may get a considerable improvement over thélamics is in fact qualitatively the same as the Langevin dy-
simple scheme in EA14). In fact, in our MC calculations namics(Type A model, see Refl.29]). This relation can be
(Sec. lll), with k~1, by employing the operator in Eq. used to estimate the longest mode lifetime for a system with
(A18), the relative discretization error could have been mad@ny number of manifoldl. For the smectic Hamiltonian in
smaller than 0.5% by usingx=1/3. We checked this error EQ.(A3), we thus find an interesting relation for this longest
level by estimating it analytically along the lines briefly out- mode lifetime,
lined above. Additionally, we checked this error by running

test simulations with a smalleAx=1/6. Throughout the 7(N)= 7(2) (A20)
simulations, the discretization error level was kept smaller 1— m ’
than the standard MC statistical eri@iue to averaging over co N

a finite MC time, which has 1% levelupper boungfor the
simulations in Sec. lll. for the system wittN manifolds. EquatiorfA20) relates the
Finally, we comment on the statistical error of our MC longest mode lifetime for the system with manifolds to
simulations(see the Table)l As usual, the equilibrium aver- that with twp manifolds(2), which is about 500 cycles, as
age smectic period Ed2.1) is obtained from the timger-  obtained by calculating the autocorrelation function from our
godio averages of the “instantaneous” smectic periods thatMC data forN=2. Thus, by Eq(A20), for our largest simu-
are calculated at each MC cydl& MC cycle corresponds to lation with N=10 manifolds, 7(10) is about 10000 MC
sequential trial updates of all degrees of freedom once, ancycles. Witht,,,=3X 10° cycles, as used in our simulation,
represents the natural time unit for MC dynamicEo esti-  this value ofr(10) is substantially shorter than the size of the
mate the statistical error for a MC simulation with,,,  aforementioned time subintervats,,/10=3X 10°. The sta-
cycles, the time average of the smectic period is calculatetistical error of the average smectic period can be sh@wyn
seperately for ten time subintervals, each with,/10 using the aforementioned relationship the Langevin dynam-
cycles. The root-mean-square variance of these ten averagéss) to be proportional toyN/tyq, LY for tma,e 7(N) (L is
from different subintervals, represents the statistical error othe lateral smectic size, here, the length of each semiflexible
a MC simulation done over single subintervaith t,,/10  polymep. For uniformity, we used the santg,,,=3x10°
cycles. These errors of subinterval averages are the erroesd L=500Q\x for all simulated systems with differem.
reported in the Table I. Thus, the factual statistical error forThus, as is also evident from the Table I, the statistical errors
the entire simulation witht,,,., MC cycles is actuallysmaller  increase with increasing\. Still, even for the largesiN
by the factory/10 than that reported in Table I. An essential =10, this error is within 1%see theN=10 line of Table I,
condition here is that there are no substantial autocorrelaand recall that the factual error is smaller than the error re-
tions between different time subintervals. In other words, theported therein by the factof10, as noted aboye
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